Talia N. Lerner, Ph.D. - US grants
Affiliations: | Northwestern University Feinberg School of Medicine, Chicago, IL, United States |
Area:
striatum, substantia nigra, dopamine, synaptic plasticityWe are testing a new system for linking grants to scientists.
The funding information displayed below comes from the NIH Research Portfolio Online Reporting Tools and the NSF Award Database.The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please sign in and mark grants as correct or incorrect matches.
High-probability grants
According to our matching algorithm, Talia N. Lerner is the likely recipient of the following grants.Years | Recipients | Code | Title / Keywords | Matching score |
---|---|---|---|---|
2014 — 2015 | Lerner, Talia Newcombe | F32Activity Code Description: To provide postdoctoral research training to individuals to broaden their scientific background and extend their potential for research in specified health-related areas. |
The Role of Striatonigrostriatal Circuitry in Habit Formation @ Stanford University DESCRIPTION (provided by applicant): Habits allow for the fast, fluid, nearly effortless execution of complex tasks, yet they can also be detrimental, for example in cases where they lead to compulsive behaviors such as in obsessive-compulsive disorder (OCD) or to behavioral patterns of drug abuse and relapse in addiction. Habit formation requires two reciprocally connected brain areas: the striatum, the input nucleus of the Basal Ganglia, and the substantia nigra (SN), which provides modulatory dopaminergic signals to the striatum. Decades of research on humans, monkeys and rodents have shown that different regions of striatum have different roles in habit formation. Initial task acquisition, which is goal-directed, is mediated b the dorsomedial striatum, while habit formation is mediated by the dorsolateral striatum. How can these two regions of striatum, which are very similar in their gross physiology and anatomy, support these two very different behavioral modes? One hypothesis, explored in this proposal, is that the connectivity motifs - the specific relationships between the inputs and the outputs - o the striatum and the SN differ by region. The long-term objective of this research will be to establish a functional input-output connectivity map of SN dopamine neurons that elucidates the diverse projection-specific functions of these neurons as an animal undergoes habit formation. In service of this overarching objective, three specific, immediately achievable aims are proposed, each of which is made possible by a recently developed technological approach. The approaches are (1) TRIO, a rabies-based circuit mapping technology that allows the simultaneous study of the inputs and outputs of a brain region of interest, (2) slice electrophysiology in combination with optogenetics, allowing for functional circuit mapping and (3) in vivo photometry, permitting the detection of calcium indicator fluorescence from subsets of SN dopamine neurons defined by their output in order to measure the activity of specific circuit elements in freely behaving animals. Together, these approaches will yield new insights into the structure and function of striatonigrostriatal circuit elements during the process of habit formation. |
0.954 |
2016 — 2019 | Lerner, Talia Newcombe | K99Activity Code Description: To support the initial phase of a Career/Research Transition award program that provides 1-2 years of mentored support for highly motivated, advanced postdoctoral research scientists. R00Activity Code Description: To support the second phase of a Career/Research Transition award program that provides 1 -3 years of independent research support (R00) contingent on securing an independent research position. Award recipients will be expected to compete successfully for independent R01 support from the NIH during the R00 research transition award period. |
Contributions of Parallel Nigrostriatal Dopamine Circuits to Reward Learning and Habit Formation @ Stanford University ? DESCRIPTION (provided by applicant): Habits allow for the fast, fluid, nearly effortless execution of complex tasks, yet they can also be detrimental, for example in cases where they lead to compulsive behaviors in OCD or to behavioral patterns of drug abuse and relapse in addiction. Habit formation requires the striatum, the input nucleus of the basal ganglia, as well as dopamine inputs to the striatum from the substantia nigra pars compacta (SNc). However, a better understanding of the mechanisms by which striatal and SNc dopaminergic circuitry support habit formation will be a crucial next step in elucidating the roles of habit formation processes in health and disease. SNc dopamine neurons are readily divisible by their efferent projections to the dorsomedial striatum (DMS) or the dorsolateral striatum (DLS), regions that decades of research have shown play distinct roles in operant learning: the DMS mediates early goal-directed task acquisition, while the DLS mediates later habit formation. The fact that SNc dopamine neurons project only to the DMS or the DLS suggests that different signals may be relayed to each area, causing the DMS and DLS to experience dopamine-dependent plasticity at different time points during behavior. Indeed, we have found that DMS- and DLS-projecting SNc dopamine neurons respond oppositely to unconditioned aversive stimuli. Although striking, this finding leaves much to be understood about the independent dopaminergic information streams being sent to the DMS and the DLS, especially in the context of learning. The goal of this proposal is to establish the circuit dynamics controlling differential processing of salient stimuli in subpopulations of SNc dopamine neurons defined by their efferent targets in the DMS and DLS, with temporal specificity and cellular resolution, over the course a complex behavior: the slow transition from goal-directed reward-seeking to habitual responding. In service of this goal, three specific aims are proposed. Each aim is focusing on elucidating one of three crucial yet unknown aspects of SNc dopaminergic circuit dynamics: determinants of variability, evolution over the course of a behavioral shift, and afferent control. First, to determine whether efferent targets are the main determinant of variability within SNc subpopulation, we will perform in vivo two-photon calcium imaging of efferent-defined SNc dopamine neurons in awake mice. Second, we will perform in vivo multi-fiber photometry in freely behaving animals to assess natural dopaminergic projection dynamics in both the DMS and the DLS within a single animal over the course of a behavioral transition to habit. Third, we will combine photometry with optogenetics to dissect mechanisms of afferent modulation of efferent-defined SNc dopamine neurons. Collectively, these approaches will enable the first functional, circuit-focused investigations of SNc dopamine neurons' involvement in learning and habit formation, providing a necessary foundation for understanding how aberrations in dopaminergic circuit dynamics could underlie an array of neurological and psychiatric disorders including OCD and drug addiction. This research will be pursued at Stanford University, a leading R1 research institution with an impressive arsenal of material and intellectual resources available for postdoctoral fellows. The Stanford neuroscience faculty is made up of preeminent researchers in a broad array of neuroscience subfields and the neuroscience graduate program is consistently ranked among the nation's best. The Stanford neuroscience community is a highly productive environment where researchers with similar interests and complementary technical expertise freely collaborate. Stanford not only offers a world-class scientific research environment, but also provides invaluable resources for career and professional development. Stanford's resources will enable the candidate to pursue both her immediate career goals - the acquisition of additional experimental and data analysis techniques and the learning and honing of key skills necessary for independence such as grantsmanship, negotiation, resource budgeting, communication and mentorship - and her long-term career goal - to succeed as a tenured neuroscience professor at a strong biomedical research institution by developing an independent group studying the regulation of brain-wide dopaminergic signaling by dissecting circuits, testing their functionality, and determining how the properties of individual circuit components as well as the emergent properties of the system evolve with learning and differ with age, gender, stress, and health status. |
0.972 |
2019 | Lerner, Talia Newcombe | DP2Activity Code Description: To support highly innovative research projects by new investigators in all areas of biomedical and behavioral research. |
@ Northwestern University At Chicago ² Project Summary/Abstract Adverse childhood experiences (ACEs), such as abuse and neglect, have been strongly and consistently linked to increased risk for a variety of psychiatric diseases, including anxiety disorders, mood disorders, and substance abuse disorders. These diseases extract a massive emotional and economic toll on society, and their combination can be devastating and even deadly in cases of suicide and overdose. The increased risk for psychiatric disease following ACEs can persist for decades, well into adulthood, and combine with adult stressors to provoke the onset of symptoms. Despite the huge burden of psychiatric disease on our nation, and the clear impact of ACEs in producing that burden, we still have little understanding of the underlying neural circuits mediating increased psychiatric risk following adverse childhood experience. Why does stress during a window of early life confer elevated psychiatric disease risk? And why are some individuals nevertheless resilient? I hypothesize that stress during an early-life period of ongoing development in the midbrain dopamine system may alter the structure, and therefore function, of neuromodulation in the adult brain, dysregulating adult stress responses. Furthermore, I propose that individual variation in the dopamine circuit alterations produced by early life stress may explain individual variation in the later development of disease symptoms. This project will elucidate the neural circuit basis of susceptibility to psychiatric disease using mice as a model system. Mice of both sexes will be exposed to varying positive and negative early life conditions, and then tested for susceptibility or resilience to stress in adulthood using a panel of behavioral tests measuring affective function and motivation. Using cutting edge neural circuit imaging techniques, including CLARITY, optogenetics, and fiber photometry, I will ask whether the strength of specific brain connections in each individual subject is predictive of that subject?s susceptibility or resilience to stress. My CLARITY approach will allow me to search broadly and systematically for connections within the dopamine circuitry that are relevant to stress susceptibility, while my optogenetics and fiber photometry approach will allow me to track specific connection strengths in awake behaving animals before, during, and after the onset of behavioral changes. This project represents my vision of harnessing individual variation in behavior to gain insight into core circuit dysfunctions underlying polygenic and heterogeneously presenting psychiatric disorders. Together, the results from these studies will lead to understanding how the dopamine system regulates complex behaviors and will guide translational work to create sophisticated new circuit therapeutics for some of the most difficult problems in psychiatric medicine. |
0.972 |