We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, John Shacka is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2016 — 2017 |
Shacka, John J |
R21Activity Code Description: To encourage the development of new research activities in categorical program areas. (Support generally is restricted in level of support and in time.) |
Alpha-Galactosidase a: a Novel Target For Reducing Alpha-Synuclein Toxicity @ University of Alabama At Birmingham
PROJECT SUMMARY The pathological accumulation of alpha-synuclein (?-syn) is believed to play a major role in Parkinson's disease (PD) pathogenesis. The autophagy-lysosome pathway (ALP) provides for the high-capacity clearance of ?-syn and its dysfunction is well-documented in PD. Inhibiting the ALP has been shown to induce ?-syn accumulation. Conversely, excess ?-syn has been shown to inhibit the ALP. Because the lysosome is critical for ?-syn clearance we believe its continued investigation will further delineate mechanisms of PD pathogenesis and foster development of PD therapeutics. Alpha-Galactosidase A (?-Gal A) is a soluble lysosomal enzyme, with mutations causing the rare lysosomal disorder Fabry disease. While it is unknown if ?- syn accumulates in Fabry patients, our analysis of postmortem PD brains indicates a decrease in ?-Gal A activity specific to specimens with increased ?-syn pathology. Our preliminary data also indicate reduced ?-Gal A activity in neuroblastoma cells following the conditional over-expression of ?-syn. Together with our report of ?-syn pathology and altered ALP markers in ?-Gal A-deficient mouse brain, these findings suggest a strong link between ?-Gal A deficiency and ?-syn accumulation. However, whether ?-Gal A deficiency exacerbates the neurotoxic potential of ?-syn is unknown. Increasing ?-Gal A activity via enzyme replacement therapy (ERT) is clinically approved therapy for Fabry disease. Because ERT has limited CNS bioavailability, there is a critical gap in understanding its potential for treating PD. To help bridge this gap we developed novel research tools to increase ?-Gal A activity in neuronal systems, including its dose-responsive increase in neuronal cells via ERT, and transgenic mice that exhibit two-fold increases in ?-Gal A brain activity. Our preliminary data in neuroblastoma cells shows that ?-Gal A ERT enhances the clearance of over-expressed ?-syn. However, whether increasing ?-Gal A activity attenuates ?-syn-associated neurotoxicity has not been tested. Taken together, we hypothesize that ?-syn-associated neurotoxicity is exacerbated by ?-Gal A deficiency and is attenuated by increasing ?-Gal A activity. In Aim 1 we will determine if ?-Gal A-deficiency in primary neuron cultures exacerbates neurotoxicity resulting from the exogenous addition of ?-syn pre-formed fibrils (PFFs) in a manner concomitant with ALP disruption. We will also determine if ?-Gal A?deficient mice exhibit exacerbated loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra following AAV2-mediated over- expression of human wild-type ?-syn. In Aim 2 we will determine if ?-syn PFF-mediated neurotoxicity in primary neuron cultures is attenuated by ?-Gal A ERT or the transgenic over-expression of ?-Gal A and if this protection is regulated by the ALP. We will also determine if ?-Gal A over-expressing mice exhibit a reduction in TH-positive neuron loss resulting from AAV2-?-syn. If our hypothesis is correct, it would suggest that ?-Gal A deficiency regulates ?-syn pathogenesis, a mechanism worthy of future investigation, and would accelerate the development of therapeutics for PD that act by increasing CNS ?-Gal A activity.
|
0.952 |