Jay R. Gibson - US grants
Affiliations: | University of Texas Southwestern Medical Center, Dallas, TX, United States |
We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the NIH Research Portfolio Online Reporting Tools and the NSF Award Database.The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please sign in and mark grants as correct or incorrect matches.
High-probability grants
According to our matching algorithm, Jay R. Gibson is the likely recipient of the following grants.Years | Recipients | Code | Title / Keywords | Matching score |
---|---|---|---|---|
1997 — 1998 | Gibson, Jay Robert | F32Activity Code Description: To provide postdoctoral research training to individuals to broaden their scientific background and extend their potential for research in specified health-related areas. |
Feedforward Inhibition in Parallel Thalamic Inputs @ Brown University I will compare and contrast feedforward inhibition in tow sets of thalamocortical projections into primary somatosensory cortex (SI) of the rat. The two projections stem from two distinct thalamic nuclei - the medial portion of the ventral posterior nucleus (VPM) and the medial portion of the posterior nucleus (Pom). These parallel thalamocortical pathways participate in sensory processing, motor processing, and in EEG rhythms generated during sleep. Feedforward inhibition probably plays a key role in these processes, but little is known about how it works. I will perform intracellular recording in a brain slice that contains both thalamic structures, SI, and the connections between the two, and study the synaptic and cellular properties of feedforward inhibitory circuitry in these two parallel projections. Very little is actually known about Pom, and from this information, I hope to acquire insight into its function. My specific aims are: 1) To describe the morphology and intrinsic membrane characteristics of inhibitory interneurons mediating feedforward inhibition in each thalamocortical pathway. 2) To describe and compare the functional characteristic of thalamocortical synapses on inhibitory interneurons mediating feedforward inhibition in each thalamocrotical pathway. 3) To characterize and compare disynaptic thalamocortical IPSPs onto layer III pyramidal cells from each thalamocortical pathway. |
0.966 |
2009 — 2012 | Gibson, Jay Robert | R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Cortical Circuit Changes and Mechanisms in a Mouse Model of Fragile X Syndrome @ Ut Southwestern Medical Center DESCRIPTION (provided by applicant): Fragile X Syndrome (FXS) is the most common inherited form of mental retardation and is caused by loss of function mutations in the Fragile X Mental Retardation gene (FMR1). It results in debilitating behavioral and cognitive impairments, and to date, there are no effective treatments. Because up to 30% of FXS patients are also autistic, understanding the etiology of FXS may also help us understand Autism Spectrum Disorder (ASD). Patients with FXS, as well as other forms of mental retardation, have abnormal dendritic spines, suggesting that abnormal synaptic function contributes to the cognitive deficits of this disease. In the FXS mouse model, the Fmr1 knockout mouse (Fmr1 KO), there is altered synaptic plasticity suggesting a possible cellular mechanism for the cognitive deficits. However, the final alterations in baseline synaptic function, network connectivity, and network function have remained allusive. Because neocortex is widely hypothesized to be critical to cognition, it is reasonable to hypothesize that synaptic and network function changes in this structure may directly underlie the cognitive deficits in FXS and autism. Accordingly, we have found clear, profound changes in the Fmr1 KO mouse at 3 levels of neurobiological function in the neocortex - synaptic, cellular, and network. Most saliently, excitatory drive is decreased 2-fold onto one class of inhibitory neuron and the excitability of excitatory neurons is increased. Together these changes suggest that neocortical circuitry is hyperexcitable. This is confirmed by changes in network function observed in vitro. These changes are consistent with the hypothesis that the balance of excitation and inhibition is altered in mental retardation and autism. Utilizing electrophysiological methods in acute brain slice preparations, we propose the following specific aims: 1) determine where and when in the neocortex functional changes exist, 2) determine the mechanisms underlying synaptic and cellular changes, and 3) determine the cellular underpinnings and mechanisms of network function change. Our results will help us understand the neurobiological mechanisms underlying FXS and autism and could lead to the development of treatments to reverse these syndromes in humans. PUBLIC HEALTH RELEVANCE: We have found alterations in neocortical circuitry in the mouse model of Fragile X Syndrome - the Fmr1 KO mouse. These alterations include synaptic and network function, and they indicate that neocortical networks are hyperexcitable. Accordingly, these changes could underlie the increased sensitivity to sensory stimuli or even cognitive disabilities in Fragile X Syndrome patients. Our proposed line of study investigating these alterations will provide potential cellular targets for genetic and drug treatments for both Fragile X Syndrome and autism since both disorders often occur together. |
0.993 |
2014 — 2015 | Gibson, Jay Robert | R03Activity Code Description: To provide research support specifically limited in time and amount for studies in categorical program areas. Small grants provide flexibility for initiating studies which are generally for preliminary short-term projects and are non-renewable. |
Fmrp Regulates the Pruning of Cell-to-Cell Connections in the Neocortex @ Ut Southwestern Medical Center DESCRIPTION (provided by applicant): Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability and a leading genetic cause of autism. Altered neocortica function involving changes at excitatory synapses likely underlie much of the cognitive and behavioral dysfunction in FXS and autism, and altered development of cortical network connectivity may be involved. Synapse elimination, or pruning, of glutamatergic synapses is hypothesized to be an important part of cortical network refinement during development. Pruning is thought to be impaired in FXS and autism - perhaps resulting in enhanced excitatory synaptic transmission and hyperexcitable networks. Support for normal pruning and its impairment in FXS comes mainly from measurements of spine morphology and electrophysiological responses in culture, but while these approaches have produced important advances, they have limitations. For example, the relationship between spines and actual synaptic function is unclear, and it is unclear how results obtained in culture relate to processes occurring in vivo. Therefore, large gaps in our knowledge of pruning in vivo and its impairment in FXS remain. We prepared acute mouse brain slices to obtain a snapshot of synaptic connectivity in vivo and used electrophysiological methods to examine cell-to- cell connections among cortical layer 5A (L5A) pyramidal neurons. We provide the first direct functional demonstration of pruning in the cortex by observing that cell-to-cell connections decline in number during a later developmental period - postnatal days 15 through 30 (P30). Unexpectedly, our results support a model where synapses are exclusively pruned at the level of cell-to-cell connections and not by individual synapses. In the FXS mouse - the Fmr1 knockout (KO) - connection pruning does not occur, and as a result, the network is hyperconnected at P30. We have also uncovered other developmental impairments in excitatory transmission in this cortical network. These results demonstrate that electrophysiological experiments examining this L5A network have great promise for an in depth examination of cortical refinement and pruning and could be employed for developing novel therapies that specifically correct impaired pruning in FXS. For this proposal, we address basic questions regarding altered pruning in the Fmr1 KO and develop techniques that would accelerate the study of synaptic developmental mechanisms in this model system. Our goal is to acquire preliminary data providing a stronger scientific and methodological rationale for a R01 proposal. We propose 2 optical stimulation methods in Aim 1 to both determine if increased connectivity with postsynaptic deletion of Fmr1 results in a net increase in excitation and determine if these approaches are effective for studying pruning mechanisms. In Aim 2, we propose virus infection experiments to determine the period at which FMRP loss-of-function causes hyperconnectivity. And in Aim 3, we determine the feasibility of studying this network in slice culture in order to complement the acute slice approach. This work would provide a foundation for studying alterations in synaptic formation or pruning in FXS and all related autism disorders. |
0.993 |
2018 — 2021 | Gibson, Jay Robert Huber, Kimberly [⬀] |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
@ Ut Southwestern Medical Center A typical neocortical pyramidal neuron integrates information from thousands of excitatory inputs from both ?local? circuits, within a cortical region, and from many ?long-range? circuits from other cortical and non-cortical regions, both ipsi- and contralaterally. These long-range connections develop postnatally, are highly specified, and regulated by sensory experience. Remarkably, >50% of excitatory synapses a typical neocortical pyramidal neuron receives are from long-range connections, but virtually nothing is known of how functional long-range connections develop, are regulated by experience or if and how long-range and local inputs are balanced. In the last grant cycle, we discovered that the activity-dependent transcription factor, Myocyte-Enhancer Factor 2C (MEF2C) functions postnatally and cell autonomously to regulate the balance of local and long-range excitatory connectivity onto layer (L) 2/3 neocortical neurons in primary somatosensory cortex. Specifically, MEF2C promotes connectivity from multiple local excitatory circuits onto L2/3 neurons, while weakening callosal inputs from contralateral somatosensory cortex. Importantly, sensory experience is necessary for MEF2C regulation of both local and callosal circuits suggesting that MEF2C as a key player in experience-dependent, input-specific development of cortical circuits. Our findings have important implications for neurodevelopmental disorders. Brain mapping studies in humans with autism spectrum disorder (ASD) and schizophrenia (SCZ) reveal imbalances in local vs. long-range functional cortical connectivity. Furthermore, loss of function mutations in Mef2c are linked with intellectual disability (ID), ASD, epilepsy and SCZ in humans and mice. We hypothesize that sensory experience-driven neural activity regulates MEF2C-dependent transcriptional control of target genes to mediate input-specific development and plasticity of cortical circuits. Thus, a corollary of this hypothesis predicts that loss of function mutations in Mef2c or its effectors would result in imbalances of local and long-range connectivity, abnormal sensory-related behaviors and neuropsychiatric disease. To test these hypotheses: In Aim 1, we will use state-of-the-art optogenetic and photostimulation circuit mapping methods to determine if Mef2c deletion generally strengthens long-range inputs onto L2/3 neurons, bidirectionally regulates inputs based on their dendritic location and maintains the input-specificity of mature circuits. Aim 2: MEF2C functions both to repress transcription of target genes and stimulate their transcription in response to neural activity. Using MEF2C mutants, we will determine which of these functions mediates experience-dependent, input-specific regulation of cortical circuits. Aim 3: FMRP, mGluR5 and Arc are required for MEF2 regulation of synapses in culture neurons and associated with ASD, ID and SCZ. Here, we will test their role in MEF2C-mediated input-specific development of cortical circuits. Aim 4: To identify candidate genes that regulate cortical circuit input specificity, we will identify the postnatal MEF2C- and experience-dependent transcriptomes in L2/3 neocortical neurons using fluorescent-activated cell sorting (FACS) and RNA sequencing. |
0.993 |