We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Michael F. Priest is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2012 — 2014 |
Priest, Michael |
F31Activity Code Description: To provide predoctoral individuals with supervised research training in specified health and health-related areas leading toward the research degree (e.g., Ph.D.). |
Allostery and Voltage Sensing of Membrane Proteins
DESCRIPTION (provided by applicant): This project has the goal of understanding the allosteric modulation, through voltage sensing, of voltage-gated ion channels and GPCRs has on their function. Allosteric modulation of voltage-gated ion channels occurs via domains not directly needed for voltage sensing and gating, that is, the first three transmembrane domains of each monomer, and the linker attaching this domain to the remainder of the protein. Allosteric modulation of GPCR activity occurs through voltage-sensing. Engineered versions of the Shaker potassium channel and the muscarinic acetylcholine receptor type 2 will be expressed in Xenopus oocytes and probed using electrophysiological and fluorescent techniques. The aims are to understand the role the linker between the third and fourth transmembrane domains of voltage-gated potassium channels plays in its function, to understand the movements that occur in the second and third transmembrane domains upon changes in membrane potential, independent of the movement of the primary voltage sensor in the fourth transmembrane domain, and to understand the movements that occur in response to changes in membrane potential in GPCRs. The long-term objectives of this project are to advance our understanding of potential novel targets for therapeutics targeted to modulate the voltage-sensing properties of voltage-gated ion channels and GPCRs. As these membrane proteins are already successful targets for many therapies, improved understanding of how to modulate their function should lead towards improvements of human health. PUBLIC HEALTH RELEVANCE: Voltage-gated ion channels and GPCRs are voltage-sensitive membrane proteins; their proper functioning is crucial for appropriate signaling between cells, for the activity of the brain, and for the beating of the heart. Understanding the movements these membrane proteins make in response to electrical changes, and which parts of the proteins are necessary for the protein to function correctly, will greatly improve the ability to produce novel therapies and drugs that target these proteins.
|
0.915 |