Liam Paninski

Affiliations: 
Columbia University, New York, NY 
Area:
Computation & Theory
Website:
http://www.stat.columbia.edu/~liam/
Google:
"Liam Paninski"
Mean distance: 13.26 (cluster 17)
 
SNBCP

Parents

Sign in to add mentor
John P. Donoghue research assistant Brown
Eero P. Simoncelli grad student 2002-2003 Columbia
 (Some rigorous results on the neural coding problem.)
Eero P. Simoncelli post-doc 2003-2003 NYU

Children

Sign in to add trainee
Shenghao Wu research assistant 2016-2018
Aneesh Kashalikar research assistant 2020-2021 Columbia
Timothy A Machado grad student Columbia
Estefany Kelly Buchanan grad student 2018- Columbia
Sean Escola grad student 2008 Columbia
Gary S. Escola grad student 2009 Columbia
Kamiar RahnamaRad grad student 2006-2011 Columbia
Alexandro D. Ramirez grad student 2012 Columbia
Carl Smith grad student 2013 Columbia
Maxim Nikitchenko grad student 2007-2013 Columbia
David B. Pfau grad student 2008-2015 Columbia
Gonzalo E. Mena grad student 2012-2017 Columbia
Yashar Ahmadian post-doc Columbia
Quentin Huys post-doc UCL, Columbia University
Scott W Linderman post-doc Columbia
Pengcheng Zhou post-doc 2017-
Anqi Wu post-doc 2019- Columbia
Eizaburo Doi post-doc 2007-2011 NYU
Uygar Sumbul post-doc 2014-2017 Columbia
Logan Grosenick post-doc 2015-2020 Columbia
Ari Pakman research scientist

Collaborators

Sign in to add collaborator
E. J. Chichilnisky collaborator NYU
Kianoush Nazarpour collaborator 2009- Columbia
Dawen Cai collaborator 2015-2016
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Biderman D, Whiteway MR, Hurwitz C, et al. (2024) Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling and cloud-native open-source tools. Nature Methods
Zimnik AJ, Ames KC, An X, et al. (2024) Identifying Interpretable Latent Factors with Sparse Component Analysis. Biorxiv : the Preprint Server For Biology
Zhang Y, He T, Boussard J, et al. (2023) Bypassing spike sorting: Density-based decoding using spike localization from dense multielectrode probes. Biorxiv : the Preprint Server For Biology
Pasarkar A, Kinsella I, Zhou P, et al. (2023) maskNMF: A denoise-sparsen-detect approach for extracting neural signals from dense imaging data. Biorxiv : the Preprint Server For Biology
Ye Z, Shelton AM, Shaker JR, et al. (2023) Ultra-high density electrodes improve detection, yield, and cell type specificity of brain recordings. Biorxiv : the Preprint Server For Biology
Biderman D, Whiteway MR, Hurwitz C, et al. (2023) Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling, and cloud-native open-source tools. Biorxiv : the Preprint Server For Biology
Abe T, Kinsella I, Saxena S, et al. (2022) Neuroscience Cloud Analysis As a Service: An open-source platform for scalable, reproducible data analysis. Neuron
Chen S, Loper J, Zhou P, et al. (2022) Blind demixing methods for recovering dense neuronal morphology from barcode imaging data. Plos Computational Biology. 18: e1009991
Turner NL, Macrina T, Bae JA, et al. (2022) Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity. Cell
Whiteway MR, Biderman D, Friedman Y, et al. (2021) Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders. Plos Computational Biology. 17: e1009439
See more...