Liam Paninski
Affiliations: | Columbia University, New York, NY |
Area:
Computation & TheoryWebsite:
http://www.stat.columbia.edu/~liam/Google:
"Liam Paninski"Mean distance: 13.26 (cluster 17) | S | N | B | C | P |
Parents
Sign in to add mentorJohn P. Donoghue | research assistant | Brown | ||
Eero P. Simoncelli | grad student | 2002-2003 | Columbia | |
(Some rigorous results on the neural coding problem.) | ||||
Eero P. Simoncelli | post-doc | 2003-2003 | NYU |
Children
Sign in to add traineeShenghao Wu | research assistant | 2016-2018 | |
Aneesh Kashalikar | research assistant | 2020-2021 | Columbia |
Timothy A Machado | grad student | Columbia | |
Estefany Kelly Buchanan | grad student | 2018- | Columbia |
Sean Escola | grad student | 2008 | Columbia |
Gary S. Escola | grad student | 2009 | Columbia |
Kamiar RahnamaRad | grad student | 2006-2011 | Columbia |
Alexandro D. Ramirez | grad student | 2012 | Columbia |
Carl Smith | grad student | 2013 | Columbia |
Maxim Nikitchenko | grad student | 2007-2013 | Columbia |
David B. Pfau | grad student | 2008-2015 | Columbia |
Gonzalo E. Mena | grad student | 2012-2017 | Columbia |
Yashar Ahmadian | post-doc | Columbia | |
Quentin Huys | post-doc | UCL, Columbia University | |
Scott W Linderman | post-doc | Columbia | |
Pengcheng Zhou | post-doc | 2017- | |
Anqi Wu | post-doc | 2019- | Columbia |
Eizaburo Doi | post-doc | 2007-2011 | NYU |
Uygar Sumbul | post-doc | 2014-2017 | Columbia |
Logan Grosenick | post-doc | 2015-2020 | Columbia |
Ari Pakman | research scientist |
Collaborators
Sign in to add collaboratorE. J. Chichilnisky | collaborator | NYU | |
Kianoush Nazarpour | collaborator | 2009- | Columbia |
Dawen Cai | collaborator | 2015-2016 |
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Biderman D, Whiteway MR, Hurwitz C, et al. (2024) Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling and cloud-native open-source tools. Nature Methods |
Zimnik AJ, Ames KC, An X, et al. (2024) Identifying Interpretable Latent Factors with Sparse Component Analysis. Biorxiv : the Preprint Server For Biology |
Zhang Y, He T, Boussard J, et al. (2023) Bypassing spike sorting: Density-based decoding using spike localization from dense multielectrode probes. Biorxiv : the Preprint Server For Biology |
Pasarkar A, Kinsella I, Zhou P, et al. (2023) maskNMF: A denoise-sparsen-detect approach for extracting neural signals from dense imaging data. Biorxiv : the Preprint Server For Biology |
Ye Z, Shelton AM, Shaker JR, et al. (2023) Ultra-high density electrodes improve detection, yield, and cell type specificity of brain recordings. Biorxiv : the Preprint Server For Biology |
Biderman D, Whiteway MR, Hurwitz C, et al. (2023) Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling, and cloud-native open-source tools. Biorxiv : the Preprint Server For Biology |
Abe T, Kinsella I, Saxena S, et al. (2022) Neuroscience Cloud Analysis As a Service: An open-source platform for scalable, reproducible data analysis. Neuron |
Chen S, Loper J, Zhou P, et al. (2022) Blind demixing methods for recovering dense neuronal morphology from barcode imaging data. Plos Computational Biology. 18: e1009991 |
Turner NL, Macrina T, Bae JA, et al. (2022) Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity. Cell |
Whiteway MR, Biderman D, Friedman Y, et al. (2021) Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders. Plos Computational Biology. 17: e1009439 |