Yaroslav O. Halchenko

Dartmouth College, Hanover, NH, United States 
Imaging, Multimodal Analysis, PyMVPA, Category-specific Visual Processing
"Yaroslav Halchenko"
Mean distance: 14.47 (cluster 29)


Sign in to add mentor
Barak A. Pearlmutter grad student 2000-2002 Univ. of New Mexico
Stephen Jose Hanson grad student 2002-2009 NJIT
 (Predictive decoding of neural data.)
James Haxby post-doc 2009- Dartmouth
BETA: Related publications


You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Subash P, Gray A, Boswell M, et al. (2023) A comparison of neuroelectrophysiology databases. Scientific Data. 10: 719
Poldrack RA, Markiewicz CJ, Appelhoff S, et al. (2023) The Past, Present, and Future of the Brain Imaging Data Structure (BIDS). Arxiv
Zhao C, Jarecka D, Covitz S, et al. (2023) A reproducible and generalizable software workflow for analysis of large-scale neuroimaging data collections using BIDS Apps. Biorxiv : the Preprint Server For Biology
Subash P, Gray A, Boswell M, et al. (2023) A Comparison of Neuroelectrophysiology Databases. Arxiv
Kiar G, Clucas J, Feczko E, et al. (2023) Align with the NMIND consortium for better neuroimaging. Nature Human Behaviour
Ciric R, Thompson WH, Lorenz R, et al. (2022) TemplateFlow: FAIR-sharing of multi-scale, multi-species brain models. Nature Methods
Manelis A, Halchenko YO, Bonar L, et al. (2022) Working memory updating in individuals with bipolar and unipolar depression: fMRI study. Translational Psychiatry. 12: 441
Satz S, Halchenko YO, Ragozzino R, et al. (2022) The Relationship Between Default Mode and Dorsal Attention Networks Is Associated With Depressive Disorder Diagnosis and the Strength of Memory Representations Acquired Prior to the Resting State Scan. Frontiers in Human Neuroscience. 16: 749767
Hanke M, Pestilli F, Wagner AS, et al. (2021) In defense of decentralized research data management. Neuroforum. 27: 17-25
Baranger DAA, Halchenko YO, Satz S, et al. (2021) Protocol for a machine learning algorithm predicting depressive disorders using the T1w/T2w ratio. Methodsx. 8: 101595
See more...