Year |
Citation |
Score |
2024 |
Hill DF, Hickman RW, Al-Mohammad A, Stasiak A, Schultz W. Dopamine neurons encode trial-by-trial subjective reward value in an auction-like task. Nature Communications. 15: 8138. PMID 39289338 DOI: 10.1038/s41467-024-52311-8 |
0.701 |
|
2024 |
Schultz W. A dopamine mechanism for reward maximization. Proceedings of the National Academy of Sciences of the United States of America. 121: e2316658121. PMID 38717856 DOI: 10.1073/pnas.2316658121 |
0.486 |
|
2023 |
Grabenhorst F, Ponce-Alvarez A, Battaglia-Mayer A, Deco G, Schultz W. A view-based decision mechanism for rewards in the primate amygdala. Neuron. PMID 37725980 DOI: 10.1016/j.neuron.2023.08.024 |
0.734 |
|
2023 |
Ferrari-Toniolo S, Schultz W. Reliable population code for subjective economic value from heterogeneous neuronal signals in primate orbitofrontal cortex. Neuron. 111: 3683-3696.e7. PMID 37678250 DOI: 10.1016/j.neuron.2023.08.009 |
0.433 |
|
2023 |
Burrell M, Pastor-Bernier A, Schultz W. Worth the work? Monkeys discount rewards by a subjective adapting effort cost. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 37625854 DOI: 10.1523/JNEUROSCI.0115-23.2023 |
0.818 |
|
2023 |
Pastor-Bernier A, Volkmann K, Chi U Seak L, Stasiak A, Plott CR, Schultz W. Studying neural responses for multi-component economic choices in human and non-human primates using concept-based behavioral choice experiments. Star Protocols. 4: 102296. PMID 37294630 DOI: 10.1016/j.xpro.2023.102296 |
0.788 |
|
2023 |
Woo JH, Aguirre CG, Bari BA, Tsutsui KI, Grabenhorst F, Cohen JY, Schultz W, Izquierdo A, Soltani A. Correction to: Mechanisms of adjustments to different types of uncertainty in the reward environment across mice and monkeys. Cognitive, Affective & Behavioral Neuroscience. PMID 36991300 DOI: 10.3758/s13415-023-01089-1 |
0.746 |
|
2023 |
Woo JH, Aguirre CG, Bari BA, Tsutsui KI, Grabenhorst F, Cohen JY, Schultz W, Izquierdo A, Soltani A. Mechanisms of adjustments to different types of uncertainty in the reward environment across mice and monkeys. Cognitive, Affective & Behavioral Neuroscience. PMID 36823249 DOI: 10.3758/s13415-022-01059-z |
0.785 |
|
2023 |
Burrell M, Pastor-Bernier A, Schultz W. Worth the work? Monkeys discount rewards by a subjective adapting effort cost. Biorxiv : the Preprint Server For Biology. PMID 36712043 DOI: 10.1101/2023.01.10.523384 |
0.822 |
|
2023 |
Hill DF, Hickman RW, Al-Mohammad A, Stasiak A, Schultz W. Dopamine signals encode internally determined subjective value regardless of externally indicated reward attributes. Biorxiv : the Preprint Server For Biology. PMID 36711724 DOI: 10.1101/2023.01.20.524896 |
0.706 |
|
2021 |
Al-Mohammad A, Schultz W. Reward value revealed by auction in rhesus monkeys. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 34937703 DOI: 10.1523/JNEUROSCI.1275-21.2021 |
0.369 |
|
2021 |
Bujold PM, Seak LCU, Schultz W, Ferrari-Toniolo S. Comparing utility functions between risky and riskless choice in rhesus monkeys. Animal Cognition. PMID 34568979 DOI: 10.1007/s10071-021-01560-x |
0.414 |
|
2021 |
Pastor-Bernier A, Stasiak A, Schultz W. Reward-specific satiety affects subjective value signals in orbitofrontal cortex during multicomponent economic choice. Proceedings of the National Academy of Sciences of the United States of America. 118. PMID 34285071 DOI: 10.1073/pnas.2022650118 |
0.863 |
|
2021 |
Bujold PM, Ferrari-Toniolo S, Schultz W. Adaptation of utility functions to reward distribution in rhesus monkeys. Cognition. 214: 104764. PMID 34000666 DOI: 10.1016/j.cognition.2021.104764 |
0.393 |
|
2021 |
Grabenhorst F, Schultz W. Functions of primate amygdala neurons in economic decisions and social decision simulation. Behavioural Brain Research. 409: 113318. PMID 33901436 DOI: 10.1016/j.bbr.2021.113318 |
0.766 |
|
2021 |
Seak LCU, Volkmann K, Pastor-Bernier A, Grabenhorst F, Schultz W. Single-dimensional human brain signals for two-dimensional economic choice options. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 33568490 DOI: 10.1523/JNEUROSCI.1555-20.2020 |
0.828 |
|
2021 |
Ferrari-Toniolo S, Bujold PM, Grabenhorst F, Báez-Mendoza R, Schultz W. Non-human primates satisfy utility maximization in compliance with the continuity axiom of Expected Utility Theory. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 33542082 DOI: 10.1523/JNEUROSCI.0955-20.2020 |
0.742 |
|
2020 |
Tremblay S, Acker L, Afraz A, Albaugh DL, Amita H, Andrei AR, Angelucci A, Aschner A, Balan PF, Basso MA, Benvenuti G, Bohlen MO, Caiola MJ, Calcedo R, Cavanaugh J, ... ... Schultz W, et al. An Open Resource for Non-human Primate Optogenetics. Neuron. PMID 33080229 DOI: 10.1016/j.neuron.2020.09.027 |
0.626 |
|
2020 |
Vestergaard MD, Schultz W. Retrospective valuation of experienced outcome encoded in distinct reward representations in the anterior insula and amygdala. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 33077553 DOI: 10.1523/JNEUROSCI.2130-19.2020 |
0.369 |
|
2020 |
Pastor-Bernier A, Volkmann K, Stasiak A, Grabenhorst F, Schultz W. Experimentally revealed stochastic preferences for multicomponent choice options. Journal of Experimental Psychology. Animal Learning and Cognition. PMID 32718155 DOI: 10.1037/Xan0000269 |
0.817 |
|
2020 |
Zangemeister L, Grabenhorst F, Schultz W. Neural activity in human ventromedial prefrontal cortex reflecting the intention to save reward. Social Cognitive and Affective Neuroscience. PMID 31993656 DOI: 10.1093/Scan/Nsaa013 |
0.813 |
|
2019 |
Pastor-Bernier A, Stasiak A, Schultz W. Orbitofrontal signals for two-component choice options comply with indifference curves of Revealed Preference Theory. Nature Communications. 10: 4885. PMID 31653852 DOI: 10.1038/S41467-019-12792-4 |
0.819 |
|
2019 |
Schultz W. Recent advances in understanding the role of phasic dopamine activity. F1000research. 8. PMID 31588354 DOI: 10.12688/f1000research.19793.1 |
0.571 |
|
2019 |
Grabenhorst F, Tsutsui KI, Kobayashi S, Schultz W. Primate prefrontal neurons signal economic risk derived from the statistics of recent reward experience. Elife. 8. PMID 31343407 DOI: 10.7554/Elife.44838 |
0.83 |
|
2019 |
Grabenhorst F, Báez-Mendoza R, Genest W, Deco G, Schultz W. Primate Amygdala Neurons Simulate Decision Processes of Social Partners. Cell. PMID 30982599 DOI: 10.1016/J.Cell.2019.02.042 |
0.772 |
|
2019 |
Ferrari-Toniolo S, Bujold PM, Schultz W. Probability distortion depends on choice sequence in rhesus monkeys. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 30705103 DOI: 10.1523/JNEUROSCI.1454-18.2018 |
0.432 |
|
2019 |
Grabenhorst F, Tsutsui K, Kobayashi S, Schultz W. Author response: Primate prefrontal neurons signal economic risk derived from the statistics of recent reward experience Elife. DOI: 10.7554/Elife.44838.033 |
0.836 |
|
2018 |
O'Neill M, Schultz W. Predictive coding of the statistical parameters of uncertain rewards by orbitofrontal neurons. Behavioural Brain Research. PMID 29709608 DOI: 10.1016/j.bbr.2018.04.041 |
0.672 |
|
2018 |
Cromwell HC, Tremblay L, Schultz W. Neural encoding of choice during a delayed response task in primate striatum and orbitofrontal cortex. Experimental Brain Research. PMID 29610950 DOI: 10.1007/S00221-018-5253-Z |
0.829 |
|
2018 |
Tsutsui K, Sakurai K, Schultz W, Perrett D. A mind to see through brain activities and behavior The Proceedings of the Annual Convention of the Japanese Psychological Association. 82: IS-008-IS-008. DOI: 10.4992/pacjpa.82.0_is-008 |
0.467 |
|
2017 |
Tsutsui KI, Grabenhorst F, Kobayashi S, Schultz W. Author Correction: A dynamic code for economic object valuation in prefrontal cortex neurons. Nature Communications. 8: 16175. PMID 29168476 DOI: 10.1038/Ncomms16175 |
0.799 |
|
2017 |
Brzosko Z, Zannone S, Schultz W, Clopath C, Paulsen O. Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. Elife. 6. PMID 28691903 DOI: 10.7554/Elife.27756 |
0.447 |
|
2017 |
Schultz W. Erratum to: Reward functions of the basal ganglia. Journal of Neural Transmission (Vienna, Austria : 1996). PMID 28653081 DOI: 10.1007/s00702-017-1738-3 |
0.465 |
|
2017 |
Schultz W. Reward prediction error. Current Biology : Cb. 27: R369-R371. PMID 28535383 DOI: 10.1016/j.cub.2017.02.064 |
0.543 |
|
2017 |
Schultz W, Stauffer WR, Lak A. The phasic dopamine signal maturing: from reward via behavioural activation to formal economic utility. Current Opinion in Neurobiology. 43: 139-148. PMID 28390863 DOI: 10.1016/J.Conb.2017.03.013 |
0.845 |
|
2017 |
Diederen KM, Ziauddeen H, Vestergaard MD, Spencer T, Schultz W, Fletcher PC. Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 37: 1708-1720. PMID 28202786 DOI: 10.1523/JNEUROSCI.1979-16.2016 |
0.532 |
|
2017 |
Pastor-Bernier A, Plott CR, Schultz W. Monkeys choose as if maximizing utility compatible with basic principles of revealed preference theory. Proceedings of the National Academy of Sciences of the United States of America. PMID 28202727 DOI: 10.1073/Pnas.1612010114 |
0.793 |
|
2017 |
Brzosko Z, Zannone S, Schultz W, Clopath C, Paulsen O. Author response: Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation Elife. DOI: 10.7554/Elife.27756.020 |
0.411 |
|
2017 |
Schultz W. Reward processing in the brain European Neuropsychopharmacology. 27. DOI: 10.1016/S0924-977X(17)30092-5 |
0.381 |
|
2016 |
Báez-Mendoza R, Schultz W. Performance error-related activity in monkey striatum during social interactions. Scientific Reports. 6: 37199. PMID 27849004 DOI: 10.1038/srep37199 |
0.442 |
|
2016 |
Lak A, Stauffer WR, Schultz W. Dopamine neurons learn relative chosen value from probabilistic rewards. Elife. 5. PMID 27787196 DOI: 10.7554/Elife.18044 |
0.867 |
|
2016 |
Zangemeister L, Grabenhorst F, Schultz W. Neural Basis for Economic Saving Strategies in Human Amygdala-Prefrontal Reward Circuits. Current Biology : Cb. PMID 27773572 DOI: 10.1016/J.Cub.2016.09.016 |
0.814 |
|
2016 |
Grabenhorst F, Hernadi I, Schultz W. Primate amygdala neurons evaluate the progress of self-defined economic choice sequences. Elife. 5. PMID 27731795 DOI: 10.7554/Elife.18731 |
0.768 |
|
2016 |
Burke CJ, Baddeley M, Tobler PN, Schultz W. Partial Adaptation of Obtained and Observed Value Signals Preserves Information about Gains and Losses. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 36: 10016-25. PMID 27683899 DOI: 10.1523/Jneurosci.0487-16.2016 |
0.747 |
|
2016 |
Tsutsui K, Grabenhorst F, Kobayashi S, Schultz W. A dynamic code for economic object valuation in prefrontal cortex neurons. Nature Communications. 7: 12554. PMID 27618960 DOI: 10.1038/Ncomms12554 |
0.846 |
|
2016 |
Stauffer WR, Lak A, Yang A, Borel M, Paulsen O, Boyden ES, Schultz W. Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques. Cell. 166: 1564-1571.e6. PMID 27610576 DOI: 10.1016/J.Cell.2016.08.024 |
0.844 |
|
2016 |
Genest W, Stauffer WR, Schultz W. Utility functions predict variance and skewness risk preferences in monkeys. Proceedings of the National Academy of Sciences of the United States of America. PMID 27402743 DOI: 10.1073/Pnas.1602217113 |
0.686 |
|
2016 |
Diederen KM, Spencer T, Vestergaard MD, Fletcher PC, Schultz W. Adaptive Prediction Error Coding in the Human Midbrain and Striatum Facilitates Behavioral Adaptation and Learning Efficiency. Neuron. PMID 27181060 DOI: 10.1016/j.neuron.2016.04.019 |
0.456 |
|
2016 |
Schultz W. Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience. 18: 23-32. PMID 27069377 |
0.466 |
|
2016 |
Schultz W. Dopamine reward prediction-error signalling: a two-component response. Nature Reviews. Neuroscience. PMID 26865020 DOI: 10.1038/nrn.2015.26 |
0.521 |
|
2016 |
Schultz W. Reward functions of the basal ganglia. Journal of Neural Transmission (Vienna, Austria : 1996). PMID 26838982 DOI: 10.1007/s00702-016-1510-0 |
0.6 |
|
2016 |
Grabenhorst F, Hernadi I, Schultz W. Author response: Primate amygdala neurons evaluate the progress of self-defined economic choice sequences Elife. DOI: 10.7554/Elife.18731.014 |
0.722 |
|
2016 |
Lak A, Stauffer WR, Schultz W. Author response: Dopamine neurons learn relative chosen value from probabilistic rewards Elife. DOI: 10.7554/Elife.18044.020 |
0.847 |
|
2015 |
Schultz W, Carelli RM, Wightman RM. Phasic dopamine signals: from subjective reward value to formal economic utility. Current Opinion in Behavioral Sciences. 5: 147-154. PMID 26719853 DOI: 10.1016/j.cobeha.2015.09.006 |
0.539 |
|
2015 |
Brzosko Z, Schultz W, Paulsen O. Retroactive modulation of spike timing-dependent plasticity by dopamine. Elife. 4. PMID 26516682 DOI: 10.7554/eLife.09685 |
0.488 |
|
2015 |
Báez-Mendoza R, van Coeverden CR, Schultz W. A neuronal reward inequity signal in primate striatum. Journal of Neurophysiology. jn.00321.2015. PMID 26378202 DOI: 10.1152/jn.00321.2015 |
0.57 |
|
2015 |
Stauffer WR, Lak A, Kobayashi S, Schultz W. Components and characteristics of the dopamine reward utility signal. The Journal of Comparative Neurology. PMID 26272220 DOI: 10.1002/Cne.23880 |
0.864 |
|
2015 |
Diederen KM, Schultz W. Scaling prediction errors to reward variability benefits error-driven learning in humans. Journal of Neurophysiology. 114: 1628-40. PMID 26180123 DOI: 10.1152/jn.00483.2015 |
0.399 |
|
2015 |
Schultz W. Neuronal Reward and Decision Signals: From Theories to Data. Physiological Reviews. 95: 853-951. PMID 26109341 DOI: 10.1152/physrev.00023.2014 |
0.487 |
|
2015 |
Vestergaard MD, Schultz W. Choice mechanisms for past, temporally extended outcomes. Proceedings. Biological Sciences / the Royal Society. 282. PMID 26063841 DOI: 10.1098/rspb.2014.1766 |
0.353 |
|
2015 |
Stauffer WR, Lak A, Bossaerts P, Schultz W. Economic choices reveal probability distortion in macaque monkeys. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 35: 3146-54. PMID 25698750 DOI: 10.1523/Jneurosci.3653-14.2015 |
0.838 |
|
2015 |
Hernádi I, Grabenhorst F, Schultz W. Planning activity for internally generated reward goals in monkey amygdala neurons. Nature Neuroscience. 18: 461-9. PMID 25622146 DOI: 10.1038/Nn.3925 |
0.769 |
|
2015 |
O'Neill M, Schultz W. Economic risk coding by single neurons in the orbitofrontal cortex. Journal of Physiology, Paris. 109: 70-77. PMID 24954027 DOI: 10.1016/j.jphysparis.2014.06.002 |
0.567 |
|
2015 |
Brzosko Z, Schultz W, Paulsen O. Author response: Retroactive modulation of spike timing-dependent plasticity by dopamine Elife. DOI: 10.7554/Elife.09685.017 |
0.379 |
|
2015 |
Schultz W. Neuronal reward and decision signals: From theories to data Physiological Reviews. 95: 853-951. DOI: 10.1152/physrev.00023.2014 |
0.384 |
|
2014 |
Medic N, Ziauddeen H, Vestergaard MD, Henning E, Schultz W, Farooqi IS, Fletcher PC. Dopamine modulates the neural representation of subjective value of food in hungry subjects. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 34: 16856-64. PMID 25505337 DOI: 10.1523/JNEUROSCI.2051-14.2014 |
0.492 |
|
2014 |
Stauffer WR, Lak A, Schultz W. Dopamine reward prediction error responses reflect marginal utility. Current Biology : Cb. 24: 2491-500. PMID 25283778 DOI: 10.1016/J.Cub.2014.08.064 |
0.854 |
|
2014 |
Lak A, Stauffer WR, Schultz W. Dopamine prediction error responses integrate subjective value from different reward dimensions. Proceedings of the National Academy of Sciences of the United States of America. 111: 2343-8. PMID 24453218 DOI: 10.1073/Pnas.1321596111 |
0.854 |
|
2014 |
Bermudez MA, Schultz W. Timing in reward and decision processes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 369: 20120468. PMID 24446502 DOI: 10.1098/rstb.2012.0468 |
0.76 |
|
2014 |
Kobayashi S, Schultz W. Reward contexts extend dopamine signals to unrewarded stimuli. Current Biology : Cb. 24: 56-62. PMID 24332545 DOI: 10.1016/j.cub.2013.10.061 |
0.739 |
|
2014 |
Kobayashi S, Schultz W. ErratumReward Contexts Extend Dopamine Signals to Unrewarded Stimuli Current Biology. DOI: 10.1016/J.Cub.2014.01.057 |
0.738 |
|
2013 |
Báez-Mendoza R, Schultz W. The role of the striatum in social behavior. Frontiers in Neuroscience. 7: 233. PMID 24339801 DOI: 10.3389/fnins.2013.00233 |
0.453 |
|
2013 |
O'Neill M, Schultz W. Risk prediction error coding in orbitofrontal neurons. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 33: 15810-4. PMID 24089488 DOI: 10.1523/JNEUROSCI.4236-12.2013 |
0.585 |
|
2013 |
Báez-Mendoza R, Harris CJ, Schultz W. Activity of striatal neurons reflects social action and own reward. Proceedings of the National Academy of Sciences of the United States of America. 110: 16634-9. PMID 24062436 DOI: 10.1073/pnas.1211342110 |
0.463 |
|
2013 |
d'Acremont M, Schultz W, Bossaerts P. The human brain encodes event frequencies while forming subjective beliefs. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 33: 10887-97. PMID 23804108 DOI: 10.1523/Jneurosci.5829-12.2013 |
0.344 |
|
2013 |
Schultz W. Updating dopamine reward signals. Current Opinion in Neurobiology. 23: 229-38. PMID 23267662 DOI: 10.1016/j.conb.2012.11.012 |
0.499 |
|
2013 |
Miyapuram KP, Schultz W, Tobler PN. Predicting the imagined contents using brain activation 2013 4th National Conference On Computer Vision, Pattern Recognition, Image Processing and Graphics, Ncvpripg 2013. DOI: 10.1109/NCVPRIPG.2013.6776230 |
0.773 |
|
2013 |
Schultz W. Rewarding Dopamine Catecholamine Research in the 21st Century: Abstracts and Graphical Abstracts, 10th International Catecholamine Symposium, 2012. 148. DOI: 10.1016/B978-0-12-800044-1.00129-X |
0.361 |
|
2012 |
Grabenhorst F, Hernádi I, Schultz W. Prediction of economic choice by primate amygdala neurons. Proceedings of the National Academy of Sciences of the United States of America. 109: 18950-5. PMID 23112182 DOI: 10.1073/Pnas.1212706109 |
0.8 |
|
2012 |
Bermudez MA, Göbel C, Schultz W. Sensitivity to temporal reward structure in amygdala neurons. Current Biology : Cb. 22: 1839-44. PMID 22959346 DOI: 10.1016/j.cub.2012.07.062 |
0.757 |
|
2012 |
Ariansen JL, Heien ML, Hermans A, Phillips PE, Hernadi I, Bermudez MA, Schultz W, Wightman RM. Monitoring extracellular pH, oxygen, and dopamine during reward delivery in the striatum of primates. Frontiers in Behavioral Neuroscience. 6: 36. PMID 22783176 DOI: 10.3389/Fnbeh.2012.00036 |
0.675 |
|
2012 |
Miyapuram KP, Tobler PN, Gregorios-Pippas L, Schultz W. BOLD responses in reward regions to hypothetical and imaginary monetary rewards. Neuroimage. 59: 1692-9. PMID 21985912 DOI: 10.1016/j.neuroimage.2011.09.029 |
0.852 |
|
2012 |
Prescott MJ, Brown VJ, Flecknell PA, Garrod K, Lemon RN, Parker AJ, Ryder K, Schultz W, Scott L, Watson J, Whitfield L. Response to Westlund's commentary: 'Can conditioned reinforcers and variable-Ratio Schedules make food- and fluid control redundant?' Journal of Neuroscience Methods. 204: 206-209. DOI: 10.1016/J.Jneumeth.2011.08.038 |
0.579 |
|
2011 |
Schultz W, O'Neill M, Tobler PN, Kobayashi S. Neuronal signals for reward risk in frontal cortex. Annals of the New York Academy of Sciences. 1239: 109-17. PMID 22145880 DOI: 10.1111/j.1749-6632.2011.06256.x |
0.829 |
|
2011 |
Hare TA, Schultz W, Camerer CF, O'Doherty JP, Rangel A. Transformation of stimulus value signals into motor commands during simple choice. Proceedings of the National Academy of Sciences of the United States of America. 108: 18120-5. PMID 22006321 DOI: 10.1073/Pnas.1109322108 |
0.432 |
|
2011 |
Schultz W. Potential vulnerabilities of neuronal reward, risk, and decision mechanisms to addictive drugs. Neuron. 69: 603-17. PMID 21338874 DOI: 10.1016/j.neuron.2011.02.014 |
0.523 |
|
2010 |
O'Neill M, Schultz W. Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value. Neuron. 68: 789-800. PMID 21092866 DOI: 10.1016/j.neuron.2010.09.031 |
0.69 |
|
2010 |
Schultz W. Multiple functions of dopamine neurons. F1000 Biology Reports. 2. PMID 20948813 DOI: 10.3410/B2-2 |
0.49 |
|
2010 |
Prescott MJ, Brown VJ, Flecknell PA, Gaffan D, Garrod K, Lemon RN, Parker AJ, Ryder K, Schultz W, Scott L, Watson J, Whitfield L. Refinement of the use of food and fluid control as motivational tools for macaques used in behavioural neuroscience research: report of a Working Group of the NC3Rs. Journal of Neuroscience Methods. 193: 167-88. PMID 20868708 DOI: 10.1016/J.Jneumeth.2010.09.003 |
0.549 |
|
2010 |
Bermudez MA, Schultz W. Reward magnitude coding in primate amygdala neurons. Journal of Neurophysiology. 104: 3424-32. PMID 20861431 DOI: 10.1152/jn.00540.2010 |
0.762 |
|
2010 |
Nomoto K, Schultz W, Watanabe T, Sakagami M. Temporally extended dopamine responses to perceptually demanding reward-predictive stimuli. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 30: 10692-702. PMID 20702700 DOI: 10.1523/Jneurosci.4828-09.2010 |
0.554 |
|
2010 |
Burke CJ, Tobler PN, Baddeley M, Schultz W. Neural mechanisms of observational learning. Proceedings of the National Academy of Sciences of the United States of America. 107: 14431-6. PMID 20660717 DOI: 10.1073/Pnas.1003111107 |
0.764 |
|
2010 |
Burke CJ, Tobler PN, Schultz W, Baddeley M. Striatal BOLD Response Reflects the Impact of Herd Information on Financial Decisions. Frontiers in Human Neuroscience. 4: 48. PMID 20589242 DOI: 10.3389/Fnhum.2010.00048 |
0.783 |
|
2010 |
Schultz W. Subjective neuronal coding of reward: temporal value discounting and risk. The European Journal of Neuroscience. 31: 2124-35. PMID 20497474 DOI: 10.1111/j.1460-9568.2010.07282.x |
0.555 |
|
2010 |
Schultz W. Dopamine signals for reward value and risk: basic and recent data. Behavioral and Brain Functions : Bbf. 6: 24. PMID 20416052 DOI: 10.1186/1744-9081-6-24 |
0.489 |
|
2010 |
Kobayashi S, Schultz W, Sakagami M. Operant conditioning of primate prefrontal neurons. Journal of Neurophysiology. 103: 1843-55. PMID 20107129 DOI: 10.1152/Jn.00173.2009 |
0.698 |
|
2010 |
Kobayashi S, Pinto de Carvalho O, Schultz W. Adaptation of reward sensitivity in orbitofrontal neurons. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 30: 534-44. PMID 20071516 DOI: 10.1523/JNEUROSCI.4009-09.2010 |
0.716 |
|
2010 |
Bermudez MA, Schultz W. Responses of amygdala neurons to positive reward-predicting stimuli depend on background reward (contingency) rather than stimulus-reward pairing (contiguity). Journal of Neurophysiology. 103: 1158-70. PMID 20032233 DOI: 10.1152/jn.00933.2009 |
0.748 |
|
2010 |
Schultz W, Tremblay L. Involvement of primate orbitofrontal neurons in reward, uncertainty, and learning The Orbitofrontal Cortex. 1-30. DOI: 10.1093/acprof:oso/9780198565741.003.0007 |
0.703 |
|
2010 |
Schultz W. Dopamine Neurons: Reward and Uncertainty Encyclopedia of Neuroscience. 571-577. DOI: 10.1016/B978-008045046-9.01299-7 |
0.437 |
|
2009 |
Christopoulos GI, Tobler PN, Bossaerts P, Dolan RJ, Schultz W. Neural correlates of value, risk, and risk aversion contributing to decision making under risk. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 29: 12574-83. PMID 19812332 DOI: 10.1523/Jneurosci.2614-09.2009 |
0.782 |
|
2009 |
Tobler PN, Christopoulos GI, O'Doherty JP, Dolan RJ, Schultz W. Risk-dependent reward value signal in human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America. 106: 7185-90. PMID 19369207 DOI: 10.1073/pnas.0809599106 |
0.777 |
|
2009 |
McCabe JA, Tobler PN, Schultz W, Dickinson A, Lupson V, Fletcher PC. Appetitive and aversive taste conditioning in a computer game influences real-world decision making and subsequent activation in insular cortex. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 29: 1046-51. PMID 19176813 DOI: 10.1523/JNEUROSCI.3938-08.2009 |
0.736 |
|
2009 |
Gregorios-Pippas L, Tobler PN, Schultz W. Short-term temporal discounting of reward value in human ventral striatum. Journal of Neurophysiology. 101: 1507-23. PMID 19164109 DOI: 10.1152/jn.90730.2008 |
0.806 |
|
2009 |
Schultz W. Midbrain dopamine neurons: A retina of the reward system? Neuroeconomics. 321-329. DOI: 10.1016/B978-0-12-374176-9.00021-X |
0.423 |
|
2008 |
Tobler PN, Christopoulos GI, O'Doherty JP, Dolan RJ, Schultz W. Neuronal distortions of reward probability without choice. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 28: 11703-11. PMID 18987206 DOI: 10.1523/JNEUROSCI.2870-08.2008 |
0.83 |
|
2008 |
Schultz W, Preuschoff K, Camerer C, Hsu M, Fiorillo CD, Tobler PN, Bossaerts P. Explicit neural signals reflecting reward uncertainty. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 363: 3801-11. PMID 18829433 DOI: 10.1098/Rstb.2008.0152 |
0.827 |
|
2008 |
Schultz W. Introduction. Neuroeconomics: the promise and the profit. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 363: 3767-9. PMID 18829431 DOI: 10.1098/rstb.2008.0153 |
0.409 |
|
2008 |
Kobayashi S, Schultz W. Influence of reward delays on responses of dopamine neurons. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 28: 7837-46. PMID 18667616 DOI: 10.1523/JNEUROSCI.1600-08.2008 |
0.737 |
|
2008 |
Fiorillo CD, Newsome WT, Schultz W. The temporal precision of reward prediction in dopamine neurons. Nature Neuroscience. 11: 966-73. PMID 18660807 DOI: 10.1038/nn.2159 |
0.825 |
|
2008 |
Hare TA, O'Doherty J, Camerer CF, Schultz W, Rangel A. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 28: 5623-30. PMID 18509023 DOI: 10.1523/Jneurosci.1309-08.2008 |
0.501 |
|
2007 |
Schultz W. Multiple dopamine functions at different time courses. Annual Review of Neuroscience. 30: 259-88. PMID 17600522 DOI: 10.1146/annurev.neuro.28.061604.135722 |
0.462 |
|
2007 |
Tobler PN, Fletcher PC, Bullmore ET, Schultz W. Learning-related human brain activations reflecting individual finances. Neuron. 54: 167-75. PMID 17408585 DOI: 10.1016/j.neuron.2007.03.004 |
0.759 |
|
2007 |
Schultz W. Behavioral dopamine signals. Trends in Neurosciences. 30: 203-10. PMID 17400301 DOI: 10.1016/j.tins.2007.03.007 |
0.542 |
|
2007 |
Tobler PN, O'Doherty JP, Dolan RJ, Schultz W. Reward value coding distinct from risk attitude-related uncertainty coding in human reward systems. Journal of Neurophysiology. 97: 1621-32. PMID 17122317 DOI: 10.1152/jn.00745.2006 |
0.767 |
|
2007 |
Schultz W. Reward Scholarpedia. 2: 1652. DOI: 10.4249/scholarpedia.1652 |
0.444 |
|
2006 |
Kobayashi S, Nomoto K, Watanabe M, Hikosaka O, Schultz W, Sakagami M. Influences of rewarding and aversive outcomes on activity in macaque lateral prefrontal cortex. Neuron. 51: 861-70. PMID 16982429 DOI: 10.1016/J.Neuron.2006.08.031 |
0.688 |
|
2006 |
Schultz W. Behavioral theories and the neurophysiology of reward. Annual Review of Psychology. 57: 87-115. PMID 16318590 DOI: 10.1146/annurev.psych.56.091103.070229 |
0.575 |
|
2006 |
Tobler PN, O'doherty JP, Dolan RJ, Schultz W. Human neural learning depends on reward prediction errors in the blocking paradigm. Journal of Neurophysiology. 95: 301-10. PMID 16192329 DOI: 10.1152/jn.00762.2005 |
0.749 |
|
2006 |
Blatter K, Schultz W. Rewarding properties of visual stimuli. Experimental Brain Research. 168: 541-6. PMID 16151778 DOI: 10.1007/s00221-005-0114-y |
0.459 |
|
2005 |
Fiorillo CD, Tobler PN, Schultz W. Evidence that the delay-period activity of dopamine neurons corresponds to reward uncertainty rather than backpropagating TD errors. Behavioral and Brain Functions : Bbf. 1: 7. PMID 15958162 DOI: 10.1186/1744-9081-1-7 |
0.827 |
|
2005 |
Tobler PN, Fiorillo CD, Schultz W. Adaptive coding of reward value by dopamine neurons. Science (New York, N.Y.). 307: 1642-5. PMID 15761155 DOI: 10.1126/science.1105370 |
0.848 |
|
2005 |
Cromwell HC, Hassani OK, Schultz W. Relative reward processing in primate striatum. Experimental Brain Research. 162: 520-5. PMID 15754177 DOI: 10.1007/s00221-005-2223-z |
0.791 |
|
2004 |
Schultz W. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Current Opinion in Neurobiology. 14: 139-47. PMID 15082317 DOI: 10.1016/j.conb.2004.03.017 |
0.578 |
|
2003 |
Tobler PN, Dickinson A, Schultz W. Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 23: 10402-10. PMID 14614099 DOI: 10.1523/Jneurosci.23-32-10402.2003 |
0.797 |
|
2003 |
Martin-Soelch C, Missimer J, Leenders KL, Schultz W. Neural activity related to the processing of increasing monetary reward in smokers and nonsmokers. The European Journal of Neuroscience. 18: 680-8. PMID 12911764 DOI: 10.1046/J.1460-9568.2003.02791.X |
0.404 |
|
2003 |
Schultz W, Tremblay L, Hollerman JR. Changes in behavior-related neuronal activity in the striatum during learning. Trends in Neurosciences. 26: 321-8. PMID 12798602 DOI: 10.1016/S0166-2236(03)00122-X |
0.835 |
|
2003 |
Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science (New York, N.Y.). 299: 1898-902. PMID 12649484 DOI: 10.1126/science.1077349 |
0.845 |
|
2003 |
Cromwell HC, Schultz W. Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. Journal of Neurophysiology. 89: 2823-38. PMID 12611937 DOI: 10.1152/jn.01014.2002 |
0.792 |
|
2002 |
Schultz W. Getting formal with dopamine and reward. Neuron. 36: 241-63. PMID 12383780 DOI: 10.1016/S0896-6273(02)00967-4 |
0.591 |
|
2001 |
Martin-Soelch C, Chevalley AF, Künig G, Missimer J, Magyar S, Mino A, Schultz W, Leenders KL. Changes in reward-induced brain activation in opiate addicts. The European Journal of Neuroscience. 14: 1360-8. PMID 11703464 DOI: 10.1046/J.0953-816X.2001.01753.X |
0.484 |
|
2001 |
Martin-Soelch C, Leenders KL, Chevalley AF, Missimer J, Künig G, Magyar S, Mino A, Schultz W. Reward mechanisms in the brain and their role in dependence: evidence from neurophysiological and neuroimaging studies. Brain Research. Brain Research Reviews. 36: 139-49. PMID 11690610 DOI: 10.1016/S0165-0173(01)00089-3 |
0.497 |
|
2001 |
Watanabe M, Cromwell HC, Tremblay L, Hollerman JR, Hikosaka K, Schultz W. Behavioral reactions reflecting differential reward expectations in monkeys. Experimental Brain Research. 140: 511-8. PMID 11685405 DOI: 10.1007/S002210100856 |
0.849 |
|
2001 |
Schultz W. Reward signaling by dopamine neurons. The Neuroscientist : a Review Journal Bringing Neurobiology, Neurology and Psychiatry. 7: 293-302. PMID 11488395 DOI: 10.1177/107385840100700406 |
0.607 |
|
2001 |
Waelti P, Dickinson A, Schultz W. Dopamine responses comply with basic assumptions of formal learning theory. Nature. 412: 43-8. PMID 11452299 DOI: 10.1038/35083500 |
0.516 |
|
2001 |
Hassani OK, Cromwell HC, Schultz W. Influence of expectation of different rewards on behavior-related neuronal activity in the striatum. Journal of Neurophysiology. 85: 2477-89. PMID 11387394 DOI: 10.1152/Jn.2001.85.6.2477 |
0.793 |
|
2001 |
Suri RE, Schultz W. Temporal difference model reproduces anticipatory neural activity. Neural Computation. 13: 841-62. PMID 11255572 DOI: 10.1162/089976601300014376 |
0.444 |
|
2001 |
Martin-Soelch C, Missimer J, Leenders K, Künig G, Magyar S, Schultz W. Sex and age differences in rCBF changes associated with reward processing Neuroimage. 13: 566. DOI: 10.1016/S1053-8119(01)91909-3 |
0.345 |
|
2000 |
Schultz W. Multiple reward signals in the brain. Nature Reviews. Neuroscience. 1: 199-207. PMID 11257908 DOI: 10.1038/35044563 |
0.538 |
|
2000 |
Künig G, Leenders KL, Martin-Sölch C, Missimer J, Magyar S, Schultz W. Reduced reward processing in the brains of Parkinsonian patients. Neuroreport. 11: 3681-7. PMID 11117472 DOI: 10.1097/00001756-200011270-00019 |
0.472 |
|
2000 |
Hollerman JR, Tremblay L, Schultz W. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Progress in Brain Research. 126: 193-215. PMID 11105648 DOI: 10.1016/S0079-6123(00)26015-9 |
0.872 |
|
2000 |
Schultz W, Dickinson A. Neuronal coding of prediction errors. Annual Review of Neuroscience. 23: 473-500. PMID 10845072 DOI: 10.1146/annurev.neuro.23.1.473 |
0.494 |
|
2000 |
Tremblay L, Schultz W. Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. Journal of Neurophysiology. 83: 1877-85. PMID 10758099 DOI: 10.1152/Jn.2000.83.4.1877 |
0.743 |
|
2000 |
Tremblay L, Schultz W. Reward-related neuronal activity during go-nogo task performance in primate orbitofrontal cortex. Journal of Neurophysiology. 83: 1864-76. PMID 10758098 DOI: 10.1152/Jn.2000.83.4.1864 |
0.753 |
|
2000 |
Schultz W, Tremblay L, Hollerman JR. Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex (New York, N.Y. : 1991). 10: 272-84. PMID 10731222 DOI: 10.1093/Cercor/10.3.272 |
0.877 |
|
1999 |
Schultz W. The Reward Signal of Midbrain Dopamine Neurons. News in Physiological Sciences : An International Journal of Physiology Produced Jointly by the International Union of Physiological Sciences and the American Physiological Society. 14: 249-255. PMID 11390860 DOI: 10.1152/Physiologyonline.1999.14.6.249 |
0.573 |
|
1999 |
Contreras-Vidal JL, Schultz W. A predictive reinforcement model of dopamine neurons for learning approach behavior. Journal of Computational Neuroscience. 6: 191-214. PMID 10406133 DOI: 10.1023/A:1008862904946 |
0.583 |
|
1999 |
Suri RE, Schultz W. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience. 91: 871-90. PMID 10391468 DOI: 10.1016/S0306-4522(98)00697-6 |
0.542 |
|
1999 |
Tremblay L, Schultz W. Relative reward preference in primate orbitofrontal cortex. Nature. 398: 704-8. PMID 10227292 DOI: 10.1038/19525 |
0.782 |
|
1998 |
Hollerman JR, Schultz W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience. 1: 304-9. PMID 10195164 DOI: 10.1038/1124 |
0.827 |
|
1998 |
Suri RE, Schultz W. Learning of sequential movements by neural network model with dopamine-like reinforcement signal. Experimental Brain Research. 121: 350-4. PMID 9746140 DOI: 10.1007/S002210050467 |
0.533 |
|
1998 |
Tremblay L, Hollerman JR, Schultz W. Modifications of reward expectation-related neuronal activity during learning in primate striatum. Journal of Neurophysiology. 80: 964-77. PMID 9705482 DOI: 10.1152/Jn.1998.80.2.964 |
0.833 |
|
1998 |
Hollerman JR, Tremblay L, Schultz W. Influence of reward expectation on behavior-related neuronal activity in primate striatum. Journal of Neurophysiology. 80: 947-63. PMID 9705481 DOI: 10.1152/Jn.1998.80.2.947 |
0.86 |
|
1998 |
Schultz W, Tremblay L, Hollerman JR. Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology. 37: 421-9. PMID 9704983 DOI: 10.1016/S0028-3908(98)00071-9 |
0.877 |
|
1998 |
Schultz W. Predictive reward signal of dopamine neurons. Journal of Neurophysiology. 80: 1-27. PMID 9658025 DOI: 10.1152/Jn.1998.80.1.1 |
0.602 |
|
1998 |
Schultz W. The phasic reward signal of primate dopamine neurons. Advances in Pharmacology (San Diego, Calif.). 42: 686-90. PMID 9327992 DOI: 10.1016/S1054-3589(08)60841-8 |
0.564 |
|
1997 |
Thut G, Schultz W, Roelcke U, Nienhusmeier M, Missimer J, Maguire RP, Leenders KL. Activation of the human brain by monetary reward. Neuroreport. 8: 1225-8. PMID 9175118 DOI: 10.1097/00001756-199703240-00033 |
0.515 |
|
1997 |
Schultz W. Dopamine neurons and their role in reward mechanisms. Current Opinion in Neurobiology. 7: 191-7. PMID 9142754 DOI: 10.1016/S0959-4388(97)80007-4 |
0.59 |
|
1997 |
Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science (New York, N.Y.). 275: 1593-9. PMID 9054347 DOI: 10.1126/science.275.5306.1593 |
0.505 |
|
1997 |
Schultz W. Chapter 17 Adaptive dopaminergic neurons report the appetitive value of environmental stimuli Advances in Psychology. 121: 317-335. DOI: 10.1016/S0166-4115(97)80103-3 |
0.591 |
|
1997 |
Schultz W. Reward responses of dopamine neurons: A biological reinforcement signal Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1327: 3-12. |
0.431 |
|
1996 |
Mirenowicz J, Schultz W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature. 379: 449-51. PMID 8559249 DOI: 10.1038/379449a0 |
0.546 |
|
1995 |
Guigon E, Dorizzi B, Burnod Y, Schultz W. Neural correlates of learning in the prefrontal cortex of the monkey: a predictive model. Cerebral Cortex (New York, N.Y. : 1991). 5: 135-47. PMID 7620290 DOI: 10.1093/Cercor/5.2.135 |
0.472 |
|
1994 |
Mirenowicz J, Schultz W. Importance of unpredictability for reward responses in primate dopamine neurons. Journal of Neurophysiology. 72: 1024-7. PMID 7983508 DOI: 10.1152/Jn.1994.72.2.1024 |
0.557 |
|
1994 |
Schultz W. Behavior-related activity of primate dopamine neurons. Revue Neurologique. 150: 634-9. PMID 7754301 |
0.491 |
|
1993 |
Schultz W, Apicella P, Ljungberg T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 13: 900-13. PMID 8441015 DOI: 10.1523/Jneurosci.13-03-00900.1993 |
0.773 |
|
1993 |
Schultz W, Apicella P, Ljungberg T, Romo R, Scarnati E. Reward-related activity in the monkey striatum and substantia nigra. Progress in Brain Research. 99: 227-35. PMID 8108550 DOI: 10.1016/S0079-6123(08)61349-7 |
0.805 |
|
1992 |
Ljungberg T, Apicella P, Schultz W. Responses of monkey dopamine neurons during learning of behavioral reactions. Journal of Neurophysiology. 67: 145-63. PMID 1552316 DOI: 10.1152/Jn.1992.67.1.145 |
0.777 |
|
1992 |
Romo R, Schultz W. Role of primate basal ganglia and frontal cortex in the internal generation of movements. III. Neuronal activity in the supplementary motor area. Experimental Brain Research. 91: 396-407. PMID 1483514 DOI: 10.1007/BF00227836 |
0.583 |
|
1992 |
Romo R, Scarnati E, Schultz W. Role of primate basal ganglia and frontal cortex in the internal generation of movements. II. Movement-related activity in the anterior striatum. Experimental Brain Research. 91: 385-95. PMID 1483513 DOI: 10.1007/BF00227835 |
0.587 |
|
1992 |
Schultz W, Romo R. Role of primate basal ganglia and frontal cortex in the internal generation of movements. I. Preparatory activity in the anterior striatum. Experimental Brain Research. 91: 363-84. PMID 1483512 DOI: 10.1007/BF00227834 |
0.605 |
|
1992 |
Schultz W, Apicella P, Scarnati E, Ljungberg T. Neuronal activity in monkey ventral striatum related to the expectation of reward. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 12: 4595-610. PMID 1464759 DOI: 10.1523/Jneurosci.12-12-04595.1992 |
0.798 |
|
1992 |
Apicella P, Scarnati E, Ljungberg T, Schultz W. Neuronal activity in monkey striatum related to the expectation of predictable environmental events. Journal of Neurophysiology. 68: 945-60. PMID 1432059 DOI: 10.1152/Jn.1992.68.3.945 |
0.739 |
|
1992 |
Schultz W. Activity of dopamine neurons in the behaving primate Seminars in Neuroscience. 4: 129-138. DOI: 10.1016/1044-5765(92)90011-P |
0.536 |
|
1991 |
Apicella P, Ljungberg T, Scarnati E, Schultz W. Responses to reward in monkey dorsal and ventral striatum. Experimental Brain Research. 85: 491-500. PMID 1915708 DOI: 10.1007/BF00231732 |
0.782 |
|
1991 |
Apicella P, Scarnati E, Schultz W. Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Experimental Brain Research. 84: 672-5. PMID 1864338 DOI: 10.1007/BF00230981 |
0.759 |
|
1991 |
Ljungberg T, Apicella P, Schultz W. Responses of monkey midbrain dopamine neurons during delayed alternation performance. Brain Research. 567: 337-41. PMID 1817739 DOI: 10.1016/0006-8993(91)90816-E |
0.773 |
|
1990 |
Schultz W, Romo R. Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. Journal of Neurophysiology. 63: 607-24. PMID 2329364 DOI: 10.1152/Jn.1990.63.3.607 |
0.631 |
|
1990 |
Romo R, Schultz W. Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements. Journal of Neurophysiology. 63: 592-606. PMID 2329363 DOI: 10.1152/Jn.1990.63.3.592 |
0.637 |
|
1989 |
Schultz W, Studer A, Romo R, Sundström E, Jonsson G, Scarnati E. Deficits in reaction times and movement times as correlates of hypokinesia in monkeys with MPTP-induced striatal dopamine depletion. Journal of Neurophysiology. 61: 651-68. PMID 2785168 DOI: 10.1152/Jn.1989.61.3.651 |
0.562 |
|
1989 |
Romo R, Schultz W. Somatosensory input to dopamine neurones of the monkey midbrain: responses to pain pinch under anaesthesia and to active touch in behavioural context. Progress in Brain Research. 80: 473-8; discussion 46. PMID 2634283 DOI: 10.1016/S0079-6123(08)62245-1 |
0.645 |
|
1989 |
Schultz W, Romo R, Scarnati E, Sundström E, Jonsson G, Studer A. Saccadic reaction times, eye-arm coordination and spontaneous eye movements in normal and MPTP-treated monkeys. Experimental Brain Research. 78: 253-67. PMID 2599036 DOI: 10.1007/BF00228897 |
0.551 |
|
1989 |
Schultz W, Scarnati E, Sundström E, Romo R. Protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism by the catecholamine uptake inhibitor nomifensine: behavioral analysis in monkeys with partial striatal dopamine depletions. Neuroscience. 31: 219-30. PMID 2528081 DOI: 10.1016/0306-4522(89)90044-4 |
0.589 |
|
1988 |
Studer A, Sundström E, Jonsson G, Schultz W. Acute electrophysiological and neurochemical effects of administration of MPTP in mice. Neuropharmacology. 27: 923-31. PMID 3263584 DOI: 10.1016/0028-3908(88)90120-7 |
0.378 |
|
1988 |
Schultz W, Romo R. Neuronal activity in the monkey striatum during the initiation of movements. Experimental Brain Research. 71: 431-6. PMID 3169174 DOI: 10.1007/BF00247503 |
0.636 |
|
1988 |
Schultz W. MPTP-induced parkinsonism in monkeys: mechanism of action, selectivity and pathophysiology. General Pharmacology. 19: 153-61. PMID 3127268 DOI: 10.1016/0306-3623(88)90055-9 |
0.308 |
|
1987 |
Studer A, Schultz W. The catecholamine uptake inhibitor nomifensine depresses impulse activity of dopamine neurons in mouse substantia nigra. Neuroscience Letters. 80: 207-12. PMID 3683979 DOI: 10.1016/0304-3940(87)90655-0 |
0.412 |
|
1987 |
Romo R, Schultz W. Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex. Experimental Brain Research. 67: 656-62. PMID 3653323 DOI: 10.1007/BF00247297 |
0.618 |
|
1987 |
Schultz W, Romo R. Responses of nigrostriatal dopamine neurons to high-intensity somatosensory stimulation in the anesthetized monkey. Journal of Neurophysiology. 57: 201-17. PMID 3559672 DOI: 10.1152/Jn.1987.57.1.201 |
0.649 |
|
1986 |
Schultz W. Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. Journal of Neurophysiology. 56: 1439-61. PMID 3794777 DOI: 10.1152/Jn.1986.56.5.1439 |
0.508 |
|
1986 |
Schultz W. Activity of pars reticulata neurons of monkey substantia nigra in relation to motor, sensory, and complex events. Journal of Neurophysiology. 55: 660-77. PMID 3701399 DOI: 10.1152/Jn.1986.55.4.660 |
0.441 |
|
1986 |
Schultz W, Scarnati E, Sundström E, Tsutsumi T, Jonsson G. The catecholamine uptake blocker nomifensine protects against MPTP-induced parkinsonism in monkeys. Experimental Brain Research. 63: 216-20. PMID 3488228 DOI: 10.1007/BF00235666 |
0.433 |
|
1985 |
Schultz W, Studer A, Jonsson G, Sundström E, Mefford I. Deficits in behavioral initiation and execution processes in monkeys with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism. Neuroscience Letters. 59: 225-32. PMID 3877257 DOI: 10.1016/0304-3940(85)90201-0 |
0.433 |
|
1985 |
Romo R, Schultz W. Prolonged changes in dopaminergic terminal excitability and short changes in dopaminergic neuron discharge rate after short peripheral stimulation in monkey. Neuroscience Letters. 62: 335-40. PMID 3005922 DOI: 10.1016/0304-3940(85)90571-3 |
0.602 |
|
1985 |
Toan DL, Schultz W. Responses of rat pallidum cells to cortex stimulation and effects of altered dopaminergic activity. Neuroscience. 15: 683-94. PMID 2866467 DOI: 10.1016/0306-4522(85)90070-3 |
0.425 |
|
1985 |
Schultz W. Neuronal processes In Volved in initiating a behavioral act Behavioral and Brain Sciences. 8: 599. DOI: 10.1017/S0140525X00045283 |
0.403 |
|
1984 |
Aebischer P, Schultz W. The activity of pars compacta neurons of the monkey substantia nigra is depressed by apomorphine. Neuroscience Letters. 50: 25-9. PMID 6493628 DOI: 10.1016/0304-3940(84)90456-7 |
0.403 |
|
1984 |
Schultz W. Recent physiological and pathophysiological aspects of Parkinsonian movement disorders. Life Sciences. 34: 2213-23. PMID 6374348 DOI: 10.1016/0024-3205(84)90208-X |
0.432 |
|
1984 |
Schultz W. Primate Dopamine Cell Activity In Relation To Behavioral Acts Clinical Neuropharmacology. 7. DOI: 10.1097/00002826-198406001-00046 |
0.411 |
|
1983 |
Schultz W, Ruffieux A, Aebischer P. The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation Experimental Brain Research. 51. DOI: 10.1007/BF00237874 |
0.429 |
|
1982 |
Schultz W. Depletion of dopamine in the striatum as an experimental model of Parkinsonism: direct effects and adaptive mechanisms. Progress in Neurobiology. 18: 121-66. PMID 6813911 DOI: 10.1016/0301-0082(82)90015-6 |
0.398 |
|
1981 |
Schultz W, Wiesendanger R, Hess B, Ruffieux A, Wiesendanger M. The somatotopy of the gracile nucleus in cats with agenesis of a hindfoot. Experimental Brain Research. 43: 413-8. PMID 7262234 DOI: 10.1007/BF00238384 |
0.304 |
|
1981 |
Ruffieux A, Schultz W. [Influence of dopamine on pars reticulata neurones of substantia nigra (author's transl)]. Journal De Physiologie. 77: 63-9. PMID 7230051 |
0.336 |
|
1980 |
Ruffieux A, Schultz W. Dopaminergic activation of reticulata neurones in the substantia nigra. Nature. 285: 240-1. PMID 7374778 DOI: 10.1038/285240A0 |
0.433 |
|
1978 |
Schultz W, Ungerstedt U. Short-term increase and long-term reversion of striatal cell activity after degeneration of the nigrostriatal dopamine system. Experimental Brain Research. 33: 159-71. PMID 700003 DOI: 10.1007/Bf00238057 |
0.54 |
|
1978 |
Schultz W, Ungerstedt U. A method to detect and record from striatal cells of low spontaneous activity by stimulating the corticostriatal pathway. Brain Research. 142: 357-62. PMID 630392 DOI: 10.1016/0006-8993(78)90643-1 |
0.469 |
|
1978 |
Schultz W, Ungerstedt U. Striatal cell supersensitivity to apomorphine in dopamine-lesioned rats correlated to behaviour. Neuropharmacology. 17: 349-53. PMID 566861 DOI: 10.1016/0028-3908(78)90005-9 |
0.526 |
|
1978 |
Ungerstedt U, Ljungberg T, Schultz W. Dopamine receptor mechanisms: behavioral and electrophysiological studies. Advances in Biochemical Psychopharmacology. 19: 311-21. PMID 29451 |
0.478 |
|
1977 |
Hellweg FC, Schultz W, Creutzfeldt OD. Extracellular and intracellular recordings from cat's cortical whisker projection area: thalamocortical response transformation. Journal of Neurophysiology. 40: 463-79. PMID 874525 DOI: 10.1152/Jn.1977.40.3.463 |
0.535 |
|
1977 |
Allen GI, Gilbert PF, Marini R, Schultz W, Yin TC. Integration of cerebral and peripheral inputs by interpositus neurons in monkey. Experimental Brain Research. 27: 81-99. PMID 401741 DOI: 10.1007/Bf00234827 |
0.638 |
|
1976 |
Schultz W, Galbraith GC, Gottschaldt KM, Creutzfeldt OD. A comparison of primary afferent and cortical neurone activity coding sinus hair movements in the cat. Experimental Brain Research. 24: 365-81. PMID 1261624 DOI: 10.1007/BF00235004 |
0.606 |
|
1976 |
Schultz W, Montgomery EB, Marini R. Stereotyped flexion of forelimb and hindlimb to microstimulation of dentate nucleus in cebus monkeys. Brain Research. 107: 151-1. PMID 817785 DOI: 10.1016/0006-8993(76)90104-9 |
0.31 |
|
Show low-probability matches. |