Year |
Citation |
Score |
2024 |
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, ... ... Sane SP, et al. Insect Flight: State of the Field and Future Directions. Integrative and Comparative Biology. PMID 38982327 DOI: 10.1093/icb/icae106 |
0.711 |
|
2024 |
Prusty AD, Sane SP. The motor apparatus of head movements in the Oleander hawkmoth (Daphnis nerii, Lepidoptera). The Journal of Comparative Neurology. 532: e25577. PMID 38289189 DOI: 10.1002/cne.25577 |
0.308 |
|
2023 |
Sane SP, Manjunath M, Mukunda CL. Vestibular feedback for flight control in hawkmoths. Trends in Neurosciences. PMID 37246111 DOI: 10.1016/j.tins.2023.05.004 |
0.66 |
|
2022 |
Chatterjee P, Mohan U, Sane SP. Small-amplitude head oscillations result from a multimodal head stabilization reflex in hawkmoths. Biology Letters. 18: 20220199. PMID 36349580 DOI: 10.1098/rsbl.2022.0199 |
0.672 |
|
2022 |
Chatterjee P, Prusty AD, Mohan U, Sane SP. Integration of visual and antennal mechanosensory feedback during head stabilization in hawkmoths. Elife. 11. PMID 35758646 DOI: 10.7554/eLife.78410 |
0.688 |
|
2020 |
Chatterjee P, Mohan U, Krishnan A, Sane SP. Evolutionary constraints on flicker fusion frequency in Lepidoptera. Journal of Comparative Physiology. a, Neuroethology, Sensory, Neural, and Behavioral Physiology. PMID 32529485 DOI: 10.1007/s00359-020-01429-3 |
0.638 |
|
2019 |
Balebail S, Raja SK, Sane SP. Landing maneuvers of houseflies on vertical and inverted surfaces. Plos One. 14: e0219861. PMID 31412069 DOI: 10.1371/journal.pone.0219861 |
0.728 |
|
2018 |
Manjila SB, Kuruvilla M, Ferveur JF, Sane SP, Hasan G. Extended Flight Bouts Require Disinhibition from GABAergic Mushroom Body Neurons. Current Biology : Cb. PMID 30612904 DOI: 10.1016/J.Cub.2018.11.070 |
0.601 |
|
2018 |
Dahake A, Stöckl AL, Foster JJ, Sane SP, Kelber A. The roles of vision and antennal mechanoreception in hawkmoth flight control. Elife. 7. PMID 30526849 DOI: 10.7554/Elife.37606 |
0.375 |
|
2018 |
Sant HH, Sane SP. The Mechanosensory-Motor Apparatus of Antennae in the Oleander hawk moth (Daphnis nerii, Lepidoptera). The Journal of Comparative Neurology. PMID 29907958 DOI: 10.1002/cne.24477 |
0.301 |
|
2017 |
Deora T, Gundiah N, Sane SP. Mechanics of the thorax in flies. The Journal of Experimental Biology. 220: 1382-1395. PMID 28424311 DOI: 10.1242/Jeb.128363 |
0.336 |
|
2015 |
Deora T, Singh AK, Sane SP. Biomechanical basis of wing and haltere coordination in flies. Proceedings of the National Academy of Sciences of the United States of America. 112: 1481-6. PMID 25605915 DOI: 10.1073/pnas.1412279112 |
0.375 |
|
2015 |
Sadaf S, Reddy OV, Sane SP, Hasan G. Neural control of wing coordination in flies. Current Biology : Cb. 25: 80-6. PMID 25496964 DOI: 10.1016/J.Cub.2014.10.069 |
0.735 |
|
2014 |
Dieudonné A, Daniel TL, Sane SP. Encoding properties of the mechanosensory neurons in the Johnston's organ of the hawk moth, Manduca sexta. The Journal of Experimental Biology. 217: 3045-56. PMID 24948632 DOI: 10.1242/jeb.101568 |
0.737 |
|
2014 |
Krishnan A, Sane SP. Visual feedback influences antennal positioning in flying hawk moths. The Journal of Experimental Biology. 217: 908-17. PMID 24265427 DOI: 10.1242/jeb.094276 |
0.322 |
|
2012 |
Krishnan A, Prabhakar S, Sudarsan S, Sane SP. The neural mechanisms of antennal positioning in flying moths. The Journal of Experimental Biology. 215: 3096-105. PMID 22660776 DOI: 10.1242/Jeb.071704 |
0.715 |
|
2011 |
Singh AK, Prabhakar S, Sane SP. The biomechanics of fast prey capture in aquatic bladderworts. Biology Letters. 7: 547-50. PMID 21389013 DOI: 10.1098/Rsbl.2011.0057 |
0.693 |
|
2010 |
Sane SP, Srygley RB, Dudley R. Antennal regulation of migratory flight in the neotropical moth Urania fulgens. Biology Letters. 6: 406-9. PMID 20181558 DOI: 10.1098/rsbl.2009.1073 |
0.32 |
|
2008 |
Daniel TL, Dieudonne A, Fox J, Myhrvold C, Sane S, Wark B. Inertial guidance systems in insects: From the neurobiology to the structural mechanics of biological gyroscopes Navigation, Journal of the Institute of Navigation. 55: 235-240. DOI: 10.1002/J.2161-4296.2008.Tb00433.X |
0.689 |
|
2008 |
Daniel TL, Dieudonne A, Fox J, Myhrvold C, Sane S, Wark B. Inertial guidance systems in insects: From the neurobiology to the structural mechanics of biological gyroscopes Navigation, Journal of the Institute of Navigation. 55: 235-240. |
0.72 |
|
2007 |
Sane SP, Dieudonné A, Willis MA, Daniel TL. Antennal mechanosensors mediate flight control in moths. Science (New York, N.Y.). 315: 863-6. PMID 17290001 DOI: 10.1126/science.1133598 |
0.613 |
|
2005 |
Lehmann FO, Sane SP, Dickinson M. The aerodynamic effects of wing-wing interaction in flapping insect wings. The Journal of Experimental Biology. 208: 3075-92. PMID 16081606 DOI: 10.1242/jeb.01744 |
0.451 |
|
2002 |
Sane SP, Dickinson MH. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. The Journal of Experimental Biology. 205: 1087-96. PMID 11919268 |
0.448 |
|
2001 |
Sane SP, Dickinson MH. The control of flight force by a flapping wing: lift and drag production. The Journal of Experimental Biology. 204: 2607-26. PMID 11533111 |
0.438 |
|
1999 |
Dickinson MH, Lehmann FO, Sane SP. Wing rotation and the aerodynamic basis of insect flight. Science (New York, N.Y.). 284: 1954-60. PMID 10373107 DOI: 10.1126/science.284.5422.1954 |
0.506 |
|
Show low-probability matches. |