Year |
Citation |
Score |
2021 |
Remme MWH, Bergmann U, Alevi D, Schreiber S, Sprekeler H, Kempter R. Hebbian plasticity in parallel synaptic pathways: A circuit mechanism for systems memory consolidation. Plos Computational Biology. 17: e1009681. PMID 34874938 DOI: 10.1371/journal.pcbi.1009681 |
0.742 |
|
2021 |
Vercruysse F, Naud R, Sprekeler H. Self-organization of a doubly asynchronous irregular network state for spikes and bursts. Plos Computational Biology. 17: e1009478. PMID 34748532 DOI: 10.1371/journal.pcbi.1009478 |
0.767 |
|
2020 |
Hertäg L, Sprekeler H. Learning prediction error neurons in a canonical interneuron circuit. Elife. 9. PMID 32820723 DOI: 10.7554/eLife.57541 |
0.313 |
|
2020 |
Naumann LB, Sprekeler H. Presynaptic inhibition rapidly stabilises recurrent excitation in the face of plasticity. Plos Computational Biology. 16: e1008118. PMID 32764742 DOI: 10.1371/journal.pcbi.1008118 |
0.399 |
|
2020 |
Hertäg L, Sprekeler H. Author response: Learning prediction error neurons in a canonical interneuron circuit Elife. DOI: 10.7554/Elife.57541.Sa2 |
0.327 |
|
2019 |
Hertäg L, Sprekeler H. Amplifying the redistribution of somato-dendritic inhibition by the interplay of three interneuron types. Plos Computational Biology. 15: e1006999. PMID 31095556 DOI: 10.1371/journal.pcbi.1006999 |
0.365 |
|
2018 |
Naud R, Sprekeler H. Sparse bursts optimize information transmission in a multiplexed neural code. Proceedings of the National Academy of Sciences of the United States of America. PMID 29934400 DOI: 10.1073/pnas.1720995115 |
0.761 |
|
2018 |
Weber SN, Sprekeler H. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity. Elife. 7. PMID 29465399 DOI: 10.7554/eLife.34560 |
0.369 |
|
2018 |
Weber SN, Sprekeler H. Author response: Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity Elife. DOI: 10.7554/Elife.34560.037 |
0.348 |
|
2017 |
Kutschireiter A, Surace SC, Sprekeler H, Pfister JP. Publisher Correction: Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception. Scientific Reports. 7: 17585. PMID 29229925 DOI: 10.1038/S41598-017-17246-9 |
0.562 |
|
2017 |
Kutschireiter A, Surace SC, Sprekeler H, Pfister JP. Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception. Scientific Reports. 7: 8722. PMID 28821729 DOI: 10.1038/s41598-017-06519-y |
0.576 |
|
2017 |
Sprekeler H. Functional consequences of inhibitory plasticity: homeostasis, the excitation-inhibition balance and beyond. Current Opinion in Neurobiology. 43: 198-203. PMID 28500933 DOI: 10.1016/j.conb.2017.03.014 |
0.368 |
|
2017 |
Chenkov N, Sprekeler H, Kempter R. Memory replay in balanced recurrent networks. Plos Computational Biology. 13: e1005359. PMID 28135266 DOI: 10.1371/journal.pcbi.1005359 |
0.654 |
|
2017 |
Newton AJH, Seidenstein AH, McDougal RA, Pérez-Cervera A, Huguet G, M-Seara T, Haimerl C, Angulo-Garcia D, Torcini A, Cossart R, Malvache A, Skiker K, Maouene M, Ragognetti G, Lorusso L, ... ... Sprekeler H, et al. 26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 Bmc Neuroscience. 18. DOI: 10.1186/S12868-017-0372-1 |
0.628 |
|
2016 |
Wilmes KA, Sprekeler H, Schreiber S. Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. Plos Computational Biology. 12: e1004768. PMID 27003565 DOI: 10.1371/journal.pcbi.1004768 |
0.402 |
|
2015 |
D'Albis T, Jaramillo J, Sprekeler H, Kempter R. Inheritance of Hippocampal Place Fields Through Hebbian Learning: Effects of Theta Modulation and Phase Precession on Structure Formation. Neural Computation. 27: 1624-72. PMID 26079752 DOI: 10.1162/Neco_A_00752 |
0.75 |
|
2015 |
Mackwood O, Sprekeler H. Functional requirements for homeostatic inhibitory plasticity in recurrent networks Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P234 |
0.399 |
|
2015 |
Kutschireiter A, Surace SC, Sprekeler H, Pfister J. Approximate nonlinear filtering with a recurrent neural network Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P196 |
0.53 |
|
2015 |
Weber SN, Sprekeler H. A model for spatially periodic firing in the hippocampal formation based on interacting excitatory and inhibitory plasticity Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-O6 |
0.388 |
|
2015 |
D'Albis T, Jaramillo J, Sprekeler H, Kempter R. Inheritance of hippocampal place fields through hebbian learning: Effects of theta modulation and phase precession on structure formation Neural Computation. 27: 1624-1672. DOI: 10.1162/NECO_a_00752 |
0.753 |
|
2014 |
Sprekeler H, Zito T, Wiskott L. An extension of slow feature analysis for nonlinear blind source separation Journal of Machine Learning Research. 15: 921-947. |
0.547 |
|
2013 |
Vogels TP, Froemke RC, Doyon N, Gilson M, Haas JS, Liu R, Maffei A, Miller P, Wierenga CJ, Woodin MA, Zenke F, Sprekeler H. Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Frontiers in Neural Circuits. 7: 119. PMID 23882186 DOI: 10.3389/Fncir.2013.00119 |
0.78 |
|
2013 |
Frémaux N, Sprekeler H, Gerstner W. Reinforcement learning using a continuous time actor-critic framework with spiking neurons. Plos Computational Biology. 9: e1003024. PMID 23592970 DOI: 10.1371/journal.pcbi.1003024 |
0.696 |
|
2013 |
Pawlak V, Greenberg DS, Sprekeler H, Gerstner W, Kerr JN. Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo. Elife. 2: e00012. PMID 23359858 DOI: 10.7554/Elife.00012 |
0.676 |
|
2013 |
Rüter J, Sprekeler H, Gerstner W, Herzog MH. The silent period of evidence integration in fast decision making. Plos One. 8: e46525. PMID 23349660 DOI: 10.1371/journal.pone.0046525 |
0.645 |
|
2013 |
Chenkov N, Sprekeler H, Kempter R. Phase sequences in balanced recurrent networks Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P207 |
0.65 |
|
2012 |
Gerstner W, Sprekeler H, Deco G. Theory and simulation in neuroscience. Science (New York, N.Y.). 338: 60-5. PMID 23042882 DOI: 10.1126/Science.1227356 |
0.63 |
|
2012 |
Rüter J, Marcille N, Sprekeler H, Gerstner W, Herzog MH. Paradoxical evidence integration in rapid decision processes. Plos Computational Biology. 8: e1002382. PMID 22359494 DOI: 10.1371/Journal.Pcbi.1002382 |
0.706 |
|
2012 |
Herzog MH, Aberg KC, Frémaux N, Gerstner W, Sprekeler H. Perceptual learning, roving and the unsupervised bias. Vision Research. 61: 95-9. PMID 22119774 DOI: 10.1068/V110194 |
0.672 |
|
2012 |
Pawlak V, Greenberg DS, Sprekeler H, Gerstner W, Kerr JN. Author response: Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo Elife. DOI: 10.7554/Elife.00012.012 |
0.643 |
|
2011 |
Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science (New York, N.Y.). 334: 1569-73. PMID 22075724 DOI: 10.1126/Science.1211095 |
0.762 |
|
2011 |
Sprekeler H. On the relation of slow feature analysis and Laplacian eigenmaps. Neural Computation. 23: 3287-302. PMID 21919780 DOI: 10.1162/NECO_a_00214 |
0.337 |
|
2011 |
Sprekeler H, Wiskott L. A theory of slow feature analysis for transformation-based input signals with an application to complex cells. Neural Computation. 23: 303-35. PMID 21105830 DOI: 10.1162/NECO_a_00072 |
0.618 |
|
2011 |
Wiskott L, Berkes P, Franzius M, Sprekeler H, Wilbert N. Slow feature analysis Scholarpedia. 6: 5282. DOI: 10.4249/Scholarpedia.5282 |
0.735 |
|
2011 |
Zenke F, Hennequin G, Sprekeler H, Vogels TP, Gerstner W. Plasticity and stability in recurrent neural networks Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P120 |
0.757 |
|
2010 |
Frémaux N, Sprekeler H, Gerstner W. Functional requirements for reward-modulated spike-timing-dependent plasticity. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 30: 13326-37. PMID 20926659 DOI: 10.1523/JNEUROSCI.6249-09.2010 |
0.685 |
|
2009 |
Schreiber S, Sprekeler H. On the sensitivity of spiking responses to noise Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P255 |
0.324 |
|
2009 |
Sprekeler H, Hennequin G, Gerstner W. Code-specific policy gradient rules for spiking neurons Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference. 1741-1749. |
0.612 |
|
2008 |
Creutzig F, Sprekeler H. Predictive coding and the slowness principle: an information-theoretic approach. Neural Computation. 20: 1026-41. PMID 18085988 DOI: 10.1162/neco.2008.01-07-455 |
0.307 |
|
2007 |
Franzius M, Sprekeler H, Wiskott L. Slowness and sparseness lead to place, head-direction, and spatial-view cells. Plos Computational Biology. 3: e166. PMID 17784780 DOI: 10.1371/journal.pcbi.0030166 |
0.635 |
|
2007 |
Sprekeler H, Michaelis C, Wiskott L. Slowness: an objective for spike-timing-dependent plasticity? Plos Computational Biology. 3: e112. PMID 17604445 DOI: 10.1371/journal.pcbi.0030112 |
0.671 |
|
2007 |
Sprekeler H, Wiskott L. Spike-timing-dependent plasticity and temporal input statistics Bmc Neuroscience. 8. DOI: 10.1186/1471-2202-8-S2-P86 |
0.678 |
|
Show low-probability matches. |