Thomas Oakley Baldwin - Publications

Affiliations: 
1975-1981 University of Illinois, Urbana-Champaign, Urbana-Champaign, IL 
 1981-1999 Texas A & M University, College Station, TX, United States 
 1999-2008 Biochemistry and Molecular Biophysics University of Arizona, Tucson, AZ 
 2008- Natural and Agricultural Sciences University of California, Riverside, Riverside, CA, United States 
Area:
General Biophysics, Biochemistry
Website:
https://newsroom.ucr.edu/1861

62 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2010 Campbell ZT, Baldwin TO, Miyashita O. Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics. Biophysical Journal. 99: 4012-9. PMID 21156144 DOI: 10.1016/J.Bpj.2010.11.001  0.652
2010 Legocki RP, Legocki M, Baldwin TO, Szalay AA. Bioluminescence in soybean root nodules: Demonstration of a general approach to assay gene expression in vivo by using bacterial luciferase. Proceedings of the National Academy of Sciences of the United States of America. 83: 9080-4. PMID 16593783 DOI: 10.1073/Pnas.83.23.9080  0.323
2009 Campbell ZT, Baldwin TO. Two lysine residues in the bacterial luciferase mobile loop stabilize reaction intermediates. The Journal of Biological Chemistry. 284: 32827-34. PMID 19710008 DOI: 10.1074/Jbc.M109.031716  0.678
2009 Campbell ZT, Weichsel A, Montfort WR, Baldwin TO. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit. Biochemistry. 48: 6085-94. PMID 19435287 DOI: 10.1021/Bi900003T  0.704
2009 Campbell ZT, Baldwin TO. Fre Is the Major Flavin Reductase Supporting Bioluminescence from Vibrio harveyi Luciferase in Escherichia coli. The Journal of Biological Chemistry. 284: 8322-8. PMID 19139094 DOI: 10.1074/Jbc.M808977200  0.669
2003 Noland BW, Baldwin TO. Demonstration of two independently folding domains in the alpha subunit of bacterial luciferase by preferential ligand binding-induced stabilization. Biochemistry. 42: 3105-12. PMID 12627978 DOI: 10.1021/Bi026725S  0.764
2002 Inlow JK, Baldwin TO. Mutational analysis of the subunit interface of Vibrio harveyi bacterial luciferase. Biochemistry. 41: 3906-15. PMID 11900533 DOI: 10.1021/Bi012113G  0.464
2001 Sparks JM, Baldwin TO. Functional implications of the unstructured loop in the (beta/alpha)(8) barrel structure of the bacterial luciferase alpha subunit. Biochemistry. 40: 15436-43. PMID 11735428 DOI: 10.1021/Bi0111855  0.757
2001 Apuy JL, Chen X, Russell DH, Baldwin TO, Giedroc DP. Ratiometric pulsed alkylation/mass spectrometry of the cysteine pairs in individual zinc fingers of MRE-binding transcription factor-1 (MTF-1) as a probe of zinc chelate stability. Biochemistry. 40: 15164-75. PMID 11735399 DOI: 10.1021/Bi0112208  0.714
2001 Apuy JL, Park ZY, Swartz PD, Dangott LJ, Russell DH, Baldwin TO. Pulsed-alkylation mass spectrometry for the study of protein folding and dynamics: development and application to the study of a folding/unfolding intermediate of bacterial luciferase. Biochemistry. 40: 15153-63. PMID 11735398 DOI: 10.1021/Bi0112199  0.758
2000 Clark AC, Noland BW, Baldwin TO. A rapid chromatographic method to separate the subunits of bacterial luciferase in urea-containing buffer. Methods in Enzymology. 305: 157-64. PMID 10812598 DOI: 10.1016/S0076-6879(00)05485-9  0.744
1999 Fedorov AN, Baldwin TO. Process of biosynthetic protein folding determines the rapid formation of native structure Journal of Molecular Biology. 294: 579-586. PMID 10610781 DOI: 10.1006/Jmbi.1999.3281  0.414
1999 Noland BW, Dangott LJ, Baldwin TO. Folding, stability, and physical properties of the alpha subunit of bacterial luciferase. Biochemistry. 38: 16136-45. PMID 10587436 DOI: 10.1021/Bi991449B  0.776
1999 Baldwin TO. Protein folding in vivo: The importance of ribosomes Nature Cell Biology. 1. PMID 10559978 DOI: 10.1038/14107  0.304
1998 Fedorov AN, Baldwin TO. Protein folding and assembly in a cell-free expression system Methods in Enzymology. 290: 1-17. PMID 9534147 DOI: 10.1016/S0076-6879(98)90003-9  0.368
1998 Francisco WA, Abu-Soud HM, DelMonte AJ, Singleton DA, Baldwin TO, Raushel FM. Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction Biochemistry. 37: 2596-2606. PMID 9485410 DOI: 10.1021/Bi972266X  0.301
1997 Fedorov AN, Baldwin TO. GroE modulates kinetic partitioning of folding intermediates between alternative states to maximize the yield of biologically active protein Journal of Molecular Biology. 268: 712-723. PMID 9175856 DOI: 10.1006/Jmbi.1997.1007  0.381
1997 Clark AC, Raso SW, Sinclair JF, Ziegler MM, Chaffotte AF, Baldwin TO. Kinetic mechanism of luciferase subunit folding and assembly. Biochemistry. 36: 1891-9. PMID 9048575 DOI: 10.1021/bi962477m  0.326
1997 Thoden JB, Holden HM, Fisher AJ, Sinclair JF, Wesenberg G, Baldwin TO, Rayment I. Structure of the beta 2 homodimer of bacterial luciferase from Vibrio harveyi: X-ray analysis of a kinetic protein folding trap. Protein Science : a Publication of the Protein Society. 6: 13-23. PMID 9007973 DOI: 10.1002/Pro.5560060103  0.411
1996 Sitnikov DM, Shadel GS, Baldwin TO. Autoinducer-independent mutants of the LuxR transcriptional activator exhibit differential effects on the two lux promoters of Vibrio fischeri Molecular and General Genetics. 252: 622-625. PMID 8914523 DOI: 10.1007/Bf02172408  0.334
1996 Baldwin TO. Firefly luciferase: The structure is known, but the mystery remains Structure. 4: 223-228. PMID 8805542 DOI: 10.1016/S0969-2126(96)00026-3  0.323
1996 Fisher AJ, Thompson TB, Thoden JB, Baldwin TO, Rayment I. The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions. The Journal of Biological Chemistry. 271: 21956-68. PMID 8703001 DOI: 10.1074/Jbc.271.36.21956  0.451
1996 Xia J, Sinclair JF, Baldwin TO, Lindahl PA. Carbon monoxide dehydrogenase from Clostridium thermoaceticum: Quaternary structure, stoichiometry of its SDS-induced dissociation, and characterization of the faster-migrating form Biochemistry. 35: 1965-1971. PMID 8639680 DOI: 10.1021/Bi9511853  0.346
1996 Christopher JA, Baldwin TO. Implications of N and C-terminal proximity for protein folding Journal of Molecular Biology. 257: 175-187. PMID 8632453 DOI: 10.1006/Jmbi.1996.0154  0.34
1995 Baldwin TO, Christopher JA, Raushel FM, Sinclair JF, Ziegler MM, Fisher AJ, Rayment I. Structure of bacterial luciferase. Current Opinion in Structural Biology. 5: 798-809. PMID 8749369 DOI: 10.1016/0959-440X(95)80014-X  0.349
1995 Fedorov AN, Baldwin TO. Contribution of cotranslational folding to the rate of formation of native protein structure Proceedings of the National Academy of Sciences of the United States of America. 92: 1227-1231. PMID 7862665 DOI: 10.1073/Pnas.92.4.1227  0.371
1995 Fisher AJ, Raushel FM, Baldwin TO, Rayment I. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry. 34: 6581-6. PMID 7756289 DOI: 10.1021/Bi00020A002  0.47
1994 Sinclair JF, Ziegler MM, Baldwin TO. Kinetic partitioning during protein folding yields multiple native states. Nature Structural Biology. 1: 320-6. PMID 7664038 DOI: 10.1038/Nsb0594-320  0.323
1993 Devine JH, Kutuzova GD, Green VA, Ugarova NN, Baldwin TO. Luciferase from the East European firefly Luciola mingrelica: Cloning and nucleotide sequence of the cDNA, overexpression in Escherichia coli and purification of the enzyme Bba - Gene Structure and Expression. 1173: 121-132. PMID 8504162 DOI: 10.1016/0167-4781(93)90172-A  0.378
1993 Clark AC, Sinclair JF, Baldwin TO. Folding of bacterial luciferase involves a non-native heterodimeric intermediate in equilibrium with the native enzyme and the unfolded subunits Journal of Biological Chemistry. 268: 10773-10779. PMID 8496144  0.331
1993 Baldwin TO, Ziegler MM, Chaffotte AF, Goldberg ME. Contribution of folding steps involving the individual subunits of bacterial luciferase to the assembly of the active heterodimeric enzyme. The Journal of Biological Chemistry. 268: 10766-72. PMID 8496143  0.369
1993 Sinclair JF, Waddle JJ, Waddill EF, Baldwin TO. Purified native subunits of bacterial luciferase are active in the bioluminescence reaction but fail to assemble into the αβ structure Biochemistry. 32: 5036-5044. PMID 8494880 DOI: 10.1021/bi00070a010  0.341
1992 Abu-Soud H, Mullins LS, Baldwin TO, Raushel FM. Stopped-flow kinetic analysis of the bacterial luciferase reaction Biochemistry. 31: 3807-3813. PMID 1567836 DOI: 10.1021/Bi00130A011  0.333
1992 Pazzagli M, Devine JH, Peterson DO, Baldwin TO. Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells Analytical Biochemistry. 204: 315-323. PMID 1443530 DOI: 10.1016/0003-2697(92)90245-3  0.333
1991 Waddle J, Baldwin TO. Individual α and β subunits of bacterial luciferase exhibit bioluminescence activity Biochemical and Biophysical Research Communications. 178: 1188-1193. PMID 1872838 DOI: 10.1016/0006-291X(91)91018-8  0.387
1990 Baldwin TO, Treat ML, Daubner SC. Cloning and expression of the luxY Gene from Vibrio fischeri strain Y-1 in Escherichia coli and complete amino acid sequence of the yellow fluorescent protein Biochemistry. 29: 5509-5515. PMID 2201407  0.666
1990 Shadel GS, Young R, Baldwin TO. Use of regulated cell lysis in a lethal genetic selection in Escherichia coli: Identification of the autoinducer-binding region of the LuxR protein from Vibrio fischeri ATCC 7744 Journal of Bacteriology. 172: 3980-3987. PMID 2141835 DOI: 10.1128/Jb.172.7.3980-3987.1990  0.336
1989 Baldwin TO, Devine JH, Heckel RC, Lin JW, Shadel GS. The complete nucleotide sequence of the lux regulon of Vibrio fischeri and the luxABN region of Photobacterium leiognathi and the mechanism of control of bacterial bioluminescence Journal of Bioluminescence and Chemiluminescence. 4: 326-341. PMID 2801220 DOI: 10.1002/Bio.1170040145  0.395
1989 Devine JH, Shadel GS, Baldwin TO. Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744 Proceedings of the National Academy of Sciences of the United States of America. 86: 5688-5692. PMID 2762291 DOI: 10.1073/Pnas.86.15.5688  0.316
1989 Daubner SC, Baldwin TO. Interaction between luciferases from various species of bioluminescent bacteria and the Yellow Fluorescent Protein of Vibrio fischeri strain Y-1 Biochemical and Biophysical Research Communications. 161: 1191-1198. PMID 2742584 DOI: 10.1016/0006-291X(89)91368-5  0.675
1989 Chen LH, Baldwin TO. Random and site-directed mutagenesis of bacterial luciferase: Investigation of the aldehyde binding site Biochemistry. 28: 2684-2689. PMID 2730882 DOI: 10.1021/Bi00432A048  0.382
1989 Baldwin TO, Chen LH, Chlumsky LJ, Devine JH, Ziegler MM. Site-directed mutagenesis of bacterial luciferase: analysis of the 'essential' thiol. Journal of Bioluminescence and Chemiluminescence. 4: 40-8. PMID 2678923 DOI: 10.1002/Bio.1170040111  0.457
1989 Raushel FM, Baldwin TO. Proposed mechanism for the bacterial bioluminescence reaction involving a dioxirane intermediate Biochemical and Biophysical Research Communications. 164: 1137-1142. PMID 2590194 DOI: 10.1016/0006-291X(89)91787-7  0.316
1988 Sugihara J, Baldwin TO. Effects of 3' end deletions from the Vibrio harveyi luxB gene on luciferase subunit folding and enzyme assembly: generation of temperature-sensitive polypeptide folding mutants. Biochemistry. 27: 2872-80. PMID 2840951 DOI: 10.1021/Bi00408A031  0.432
1988 Devine JH, Countryman C, Baldwin TO. Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC 7744 Biochemistry. 27: 837-842. DOI: 10.1021/Bi00402A052  0.357
1987 Daubner SC, Astorga AM, Leisman GB, Baldwin TO. Yellow light emission of Vibrio fischeri strain Y-1: purification and characterization of the energy-accepting yellow fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America. 84: 8912-6. PMID 3480518 DOI: 10.1073/Pnas.84.24.8912  0.681
1987 Waddle JJ, Johnston TC, Baldwin TO. Polypeptide folding and dimerization in bacterial luciferase occur by a concerted mechanism in vivo Biochemistry. 26: 4917-4921. PMID 3311158 DOI: 10.1021/Bi00390A004  0.41
1986 Baldwin TO, Holzman TF, Holzman RB. [22] Active center-based immunoassay approach using bacterial luciferase Methods in Enzymology. 133: 248-264. DOI: 10.1016/0076-6879(86)33071-4  0.356
1986 Baldwin TO, Holzman TF, Holzman RB, Riddle VA. [9] Purification of bacterial luciferase by affinity methods Methods in Enzymology. 133: 98-108. DOI: 10.1016/0076-6879(86)33058-1  0.38
1985 AbouKhair NK, Ziegler MM, Baldwin TO. Bacterial luciferase: demonstration of a catalytically competent altered conformational state following a single turnover. Biochemistry. 24: 3942-7. PMID 4052376 DOI: 10.1021/Bi00336A021  0.401
1984 Baldwin TO, Berends T, Bunch TA, Holzman TF, Rausch SK, Shamansky L, Treat ML, Ziegler MM. Cloning of the luciferase structural genes from Vibrio harveyi and expression of bioluminescence in Escherichia coli. Biochemistry. 23: 3663-7. PMID 6089876 DOI: 10.1021/Bi00311A014  0.435
1983 Cohn DH, Ogden RC, Abelson JN, Baldwin TO, Nealson KH, Simon MI, Mileham AJ. Cloning of the Vibrio harveyi luciferase genes: use of a synthetic oligonucleotide probe. Proceedings of the National Academy of Sciences of the United States of America. 80: 120-123. PMID 6571986 DOI: 10.1073/Pnas.80.1.120  0.344
1983 Holzman TF, Baldwin TO. Reversible inhibition of the bacterial luciferase catalyzed bioluminescence reaction by aldehyde substrate: Kinetic mechanism and ligand effects Biochemistry. 22: 2838-2846. DOI: 10.1021/Bi00281A011  0.362
1982 Holzman TF, Leytus SP, Baldwin TO, Mangel WF. Digitization of sedimentation equilibrium and velocity data for analysis by minicomputer Analytical Biochemistry. 119: 62-72. PMID 7041695 DOI: 10.1016/0003-2697(82)90665-0  0.312
1982 Holzman TF, Baldwin TO. Isolation of bacterial luciferases by affinity chromatography on 2,2-diphenylpropylamine-sepharose: Phosphate-mediated binding to an immobilized substrate analogue Biochemistry. 21: 6194-6201. PMID 6983889 DOI: 10.1021/Bi00267A026  0.409
1981 Holzman TF, Baldwin TO. Binding of 2,2-diphenylpropylamine at the aldehyde site of bacterial luciferase increases the affinity of the reduced riboflavin 5′-phosphate site Biochemistry. 20: 5524-5528. PMID 7295690 DOI: 10.1021/Bi00522A027  0.346
1981 Welches WR, Baldwin TO. Active center studies on bacterial luciferase: Modification of the enzyme with 2,4-dinitrofluorobenzene Biochemistry. 20: 512-517. PMID 6971121 DOI: 10.1021/Bi00506A011  0.412
1980 Holzman TF, Riley PL, Baldwin TO. Inactivation of luciferase from the luminous marine bacterium Beneckea harveyi by proteases: Evidence for a protease labile region and properties of the protein following inactivation Archives of Biochemistry and Biophysics. 205: 554-563. PMID 6970544 DOI: 10.1016/0003-9861(80)90138-1  0.304
1980 Holzman TF, Baldwin TO. Proteolytic inactivation of luciferases from three species of luminous marine bacteria, Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum: evidence of a conserved structural feature Proceedings of the National Academy of Sciences of the United States of America. 77: 6363-6367. PMID 6161366 DOI: 10.1073/Pnas.77.11.6363  0.467
1979 Baldwin TO, Ziegler MM, Powers DA. Covalent structure of subunits of bacterial luciferase: NH2-terminal sequence demonstrates subunit homology Proceedings of the National Academy of Sciences of the United States of America. 76: 4887-4889. PMID 315557 DOI: 10.1073/Pnas.76.10.4887  0.445
1978 Baldwin TO. [22] Bacterial luciferase as a generalized substrate for the assay of proteases Methods in Enzymology. 57: 198-201. DOI: 10.1016/0076-6879(78)57024-9  0.353
1978 Hastings JW, Baldwin TO, Nicoli MZ. [14] Bacterial luciferase: Assay, purification, and properties Methods in Enzymology. 57: 135-152. DOI: 10.1016/0076-6879(78)57016-X  0.366
Show low-probability matches.