Year |
Citation |
Score |
2011 |
Eisenman G. Ion selectivity of proteins: lessons from molecular dynamics simulations on valinomycin. The Journal of General Physiology. 138: 375. PMID 21875983 DOI: 10.1085/Jgp.201110702 |
0.407 |
|
1992 |
E. Burroughs S, Eisenman G, Horrocks WD. Characterization of the five-fold Ca2+ binding site of satellite tobacco necrosis virus using Eu3+ luminescence spectroscopy: A marked size-selectivity among rare earth ions Biophysical Chemistry. 42: 249-256. PMID 1581521 DOI: 10.1016/0301-4622(92)80017-Y |
0.314 |
|
1992 |
Alvarez O, Villarroel A, Eisenman G. Calculation of ion currents from energy profiles and energy profiles from ion currents in multibarrier, multisite, multioccupancy channel model. Methods in Enzymology. 207: 816-54. PMID 1382214 DOI: 10.1016/0076-6879(92)07058-V |
0.408 |
|
1992 |
Ravindran A, Kwiecinski H, Alvarez O, Eisenman G, Moczydlowski E. Modeling ion permeation through batrachotoxin-modified Na+ channels from rat skeletal muscle with a multi-ion pore. Biophysical Journal. 61: 494-508. PMID 1312366 DOI: 10.1016/S0006-3495(92)81854-4 |
0.349 |
|
1992 |
Åqvist J, Alvarez O, Eisenman G. Ion-selective properties of a small ionophore in methanol studied by free energy perturbation simulations Journal of Physical Chemistry. 96: 10019-10025. DOI: 10.1021/J100203A079 |
0.407 |
|
1992 |
Eisenman G, Alvarez O, Aqvist J. Free energy perturbation simulations of cation binding to valinomycin Journal of Inclusion Phenomena and Molecular Recognition in Chemistry. 12: 23-53. DOI: 10.1007/978-94-011-2532-1_3 |
0.412 |
|
1991 |
Eisenman G, Aqvist J, Alvarez O. Free energies underlying ion binding and transport in protein channels: Free energy perturbation simulations of ion binding and selectivity for valinomycin Journal of the Chemical Society, Faraday Transactions. 87: 2099-2109. DOI: 10.1039/Ft9918702099 |
0.415 |
|
1991 |
Burroughs SE, Eisenman G, Horrocks WD. Marked ion size-selectivity of the five-fold Ca2+ binding site in an icosahedral virus as studied by Eu3+ luminescence spectroscopy. Journal of Inorganic Biochemistry. 43: 397. DOI: 10.1016/0162-0134(91)84382-J |
0.339 |
|
1990 |
Eisenman G, Villarroel A, Montal M, Alvarez O. Energy profiles for ion permeation in pentameric protein channels: from viruses to receptor channels Progress in Cell Research. 1: 195-211. DOI: 10.1016/B978-0-444-81125-7.50023-2 |
0.378 |
|
1987 |
Dani JA, Eisenman G. Monovalent and divalent cation permeation in acetylcholine receptor channels. Ion transport related to structure. The Journal of General Physiology. 89: 959-83. PMID 2440979 |
0.332 |
|
1987 |
Eisenman G, Dani JA. An introduction to molecular architecture and permeability of ion channels. Annual Review of Biophysics and Biophysical Chemistry. 16: 205-26. PMID 2439095 DOI: 10.1146/annurev.bb.16.060187.001225 |
0.323 |
|
1986 |
Eisenman G, Latorre R, Miller C. Multi-ion conduction and selectivity in the high-conductance Ca++-activated K+ channel from skeletal muscle. Biophysical Journal. 50: 1025-34. PMID 2432947 DOI: 10.1016/S0006-3495(86)83546-9 |
0.339 |
|
1984 |
Hägglund JV, Eisenman G, Sandblom JP. Single-salt behavior of a symmetrical 4-site channel with barriers at its middle and ends Bulletin of Mathematical Biology. 46: 41-80. DOI: 10.1016/S0092-8240(84)80034-8 |
0.353 |
|
1983 |
Eisenman G, Horn R. Ionic selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels The Journal of Membrane Biology. 76: 197-225. PMID 6100862 DOI: 10.1007/Bf01870364 |
0.43 |
|
1981 |
Margalit R, Eisenman G. Ionic permeation of lipid bilayer membranes mediated by a neutral, noncyclic Li+-selective carrier having imide and ether ligands. I. Selectivity among monovalent cations The Journal of Membrane Biology. 61: 209-219. DOI: 10.1007/Bf01870525 |
0.395 |
|
1980 |
Eisenman G, Hägglund J, Sandblom J, Enos B. The current-voltage behavior of ion channels: important features of the energy profile of the gramicidin channel deduced from the conductance-voltage characteristic in the limit of low ion concentration. Upsala Journal of Medical Sciences. 85: 247-57. PMID 6165127 DOI: 10.3109/03009738009179195 |
0.392 |
|
1980 |
Eisenman G, Enos B, Hägglund J, Sandblom J. Gramicidin as an example of a single-filing ionic channel. Annals of the New York Academy of Sciences. 339: 8-20. PMID 6156618 DOI: 10.1111/J.1749-6632.1980.Tb15964.X |
0.338 |
|
1979 |
Hägglund J, Enos B, Eisenman G. Multi-site, multi-barrier, multi-occupancy models for the electrical behavior of single filing channels like those of gramicidin. Brain Research Bulletin. 4: 154-8. PMID 89003 DOI: 10.1016/0361-9230(79)90077-7 |
0.312 |
|
1978 |
Neher E, Sandblom J, Eisenman G. Ionic selectivity, saturation, and block in gramicidin A channels. II. Saturation behavior of single channel conductances and evidence for the existence of multiple binding sites in the channel. The Journal of Membrane Biology. 40: 97-116. PMID 77904 DOI: 10.1007/Bf01871143 |
0.386 |
|
1978 |
Eisenman G, Sandblom J, Neher E. Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H, and effects of anion binding. Biophysical Journal. 22: 307-40. PMID 77689 DOI: 10.1016/S0006-3495(78)85491-5 |
0.375 |
|
1977 |
Sandblom J, Eisenman G, Neher E. Ionic selectivity, saturation and block in gramicidin A channels: I. Theory for the electrical properties of ion selective channels having two pairs of binding sites and multiple conductance states. The Journal of Membrane Biology. 31: 383-47. PMID 66317 DOI: 10.1007/BF01869414 |
0.377 |
|
1976 |
Krasne S, Eisenman G. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nonactin-type carriers The Journal of Membrane Biology. 30: 1-44. PMID 1037004 DOI: 10.1007/Bf01869658 |
0.451 |
|
1976 |
Eisenman G, Sandblom J, Neher E. Evidence for multiple occupancy of gramicidin A channels by ions Biophysical Journal. 16: 81A. |
0.322 |
|
1975 |
Laprade R, Ciani S, Eisenman G, Szabo G. The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpreatation Membranes. 3: 127-214. PMID 1105058 |
0.311 |
|
1973 |
Eisenman G, Szabo G, McLaughlin SGA, Ciani SM. Molecular basis for the action of macrocyclic carriers on passive ionic translocation across lipid bilayer membranes Journal of Bioenergetics. 4: 93-148. PMID 4717529 DOI: 10.1007/Bf01516052 |
0.352 |
|
1973 |
Szabo G, Eisenman G, Laprade R, Ciani SM, Krasne S. Experimentally observed effects of carriers on the electrical properties of bilayer membranes--equilibrium domain. With a contribution on the molecular basis of ion selectivity Membranes. 2: 179-328. PMID 4585227 |
0.35 |
|
1973 |
Ciani S, Laprade R, Eisenman G, Szabo G. Theory for carrier-mediated zero-current conductance of bilayers extended to allow for nonequilibrium of interfacial reactions, spatially dependent mobilities and barrier shape The Journal of Membrane Biology. 11: 255-292. DOI: 10.1007/Bf01869826 |
0.441 |
|
1972 |
Sandblom J, Walker JL, Eisenman G. The transient response and impedance locus of a mobile site membrane Biophysical Journal. 12: 587-596. PMID 5030566 DOI: 10.1016/S0006-3495(72)86105-8 |
0.35 |
|
1972 |
Szabo G, Eisenman G, McLaughlin SG, Krasne S. Ionic probes of membrane structures Annals of the New York Academy of Sciences. 195: 273-290. PMID 4504092 DOI: 10.1111/J.1749-6632.1972.Tb54807.X |
0.378 |
|
1971 |
McLaughlin SG, Szabo G, Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes Journal of General Physiology. 58: 667-687. PMID 5120393 DOI: 10.1085/Jgp.58.6.667 |
0.44 |
|
1971 |
Krasne S, Eisenman G, Szabo G. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin Science. 174: 412-415. PMID 5111995 DOI: 10.1126/Science.174.4007.412 |
0.413 |
|
1970 |
McLaughlin SG, Szabo G, Eisenman G, Ciani SM. Surface charge and the conductance of phospholipid membranes Proceedings of the National Academy of Sciences of the United States of America. 67: 1268-1275. PMID 5274456 DOI: 10.1073/Pnas.67.3.1268 |
0.364 |
|
1969 |
Szabo G, Eisenman G, Ciani S. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes The Journal of Membrane Biology. 1: 346-382. DOI: 10.1007/Bf01869788 |
0.412 |
|
1969 |
Eisenman G, Ciani S, Szabo G. The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents The Journal of Membrane Biology. 1: 294-345. DOI: 10.1007/Bf01869787 |
0.365 |
|
1968 |
Eisenman G, Ciani SM, Szabo G. Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions Federation Proceedings. 27: 1289-1304. PMID 5725219 |
0.339 |
|
1968 |
Eisenman G. Ion permeation of cell membranes and its models Federation Proceedings. 27: 1249-1251. PMID 5725214 |
0.331 |
|
1968 |
Walker JL, Eisenman G, Sandblom JP. Electrical phenomena associated with the transport of ions and ion pairs in liquid ion-exchange membranes. 3. Experimental observations in a model system The Journal of Physical Chemistry. 72: 978-990. PMID 5636887 DOI: 10.1021/J100849A032 |
0.441 |
|
1967 |
Sandlbom J, Eisenman G, Walker JL. Electrical phenomena associated with the transport of ions and ion pairs in liquid ion-exchange membranes. II. Nonzero current properties The Journal of Physical Chemistry. 71: 3871-3878. PMID 6074046 DOI: 10.1021/J100871A023 |
0.436 |
|
1967 |
Sandblom J, Eisenman G, Walker JL. Electrical phenomena associated with the transport of ions and ion pairs in liquid ion-exchange membranes. I. Zero current properties Journal of Physical Chemistry. 71: 3862-3870. PMID 6074045 |
0.357 |
|
1967 |
Sandblom JP, Eisenman G. Membrane Potentials at Zero Current: The Significance of a Constant Ionic Permeability Ratio Biophysical Journal. 7: 217-242. PMID 6035122 DOI: 10.1016/S0006-3495(67)86585-8 |
0.358 |
|
1967 |
Eisenman G, Sandblom JP, Walker JL. Membrane structure and ion permeation. Study of ion exchange membrane structure and function is relevant to analysis of biological ion permeation Science. 155: 965-974. PMID 5334938 DOI: 10.1126/Science.155.3765.965 |
0.439 |
|
1967 |
Eisenman G, Sandblom JP, Walker JL. Membrane structure and ion permeation Science. 155: 974-979. |
0.34 |
|
1966 |
Conti F, Eisenman G. The Steady-State Properties of an Ion Exchange Membrane with Mobile Sites Biophysical Journal. 6: 227-246. PMID 5962278 DOI: 10.1016/S0006-3495(66)86653-5 |
0.332 |
|
1966 |
Walker JL, Eisenman G. A Test of the Theory of the Steady-State Properties of an Ion Exchange Membrane with Mobile Sites and Dissociated Counterions Biophysical Journal. 6: 513-533. DOI: 10.1016/S0006-3495(66)86673-0 |
0.309 |
|
1965 |
Conti F, Eisenman G. The Non-Steady-State Membrane Potential of Ion Exchangers with Fixed Sites Biophysical Journal. 5: 247-256. PMID 14268957 DOI: 10.1016/S0006-3495(65)86714-5 |
0.333 |
|
1965 |
Conti F, Eisenman G. The steady state properties of ion exchange membranes with fixed sites Biophysical Journal. 5: 511-530. PMID 5861704 |
0.331 |
|
1962 |
Karreman G, Eisenman G. Electrical potentials and ionic fluxes in ion exchangers: I. "n type" non-ideal systems with zero current The Bulletin of Mathematical Biophysics. 24: 413-427. PMID 13962607 DOI: 10.1007/Bf02477998 |
0.402 |
|
1957 |
Eisenman G, Rudin DO, Casby JU. Glass electrode for measuring sodium ion Science. 126: 831-834. PMID 13467284 DOI: 10.1126/Science.126.3278.831 |
0.336 |
|
Show low-probability matches. |