David B. Morton, Ph.D. - Publications

Integrative Bioscience Oregon Health and Science University, Portland, OR 
Drosophila neurobiology, cGMP signaling, ALS

58 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2018 Lembke KM, Law AD, Ahrar J, Morton DB. Deletion of a specific exon in the voltage-gated calcium channel, , causes disrupted locomotion in Drosophila larvae. The Journal of Experimental Biology. PMID 30397173 DOI: 10.1242/Jeb.191106  0.76
2017 Lembke KM, Morton DB. Exploring the Interaction of Drosophila TDP-43 and the Type II Voltage-Gated Calcium Channel, Cacophony, in Regulating Motor Function and Behavior. Journal of Experimental Neuroscience. 11: 1179069517740892. PMID 29162978 DOI: 10.1177/1179069517740892  0.76
2017 Lembke KM, Scudder C, Morton DB. Restoration of motor defects caused by loss of Drosophila TDP-43 by expression of the voltage-gated calcium channel, Cacophony, in central neurons. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 28847811 DOI: 10.1523/Jneurosci.0554-17.2017  0.76
2017 Chang JC, Morton DB. Drosophila lines with mutant and wild type human TDP-43 replacing the endogenous gene reveals phosphorylation and ubiquitination in mutant lines in the absence of viability or lifespan defects. Plos One. 12: e0180828. PMID 28686708 DOI: 10.1371/Journal.Pone.0180828  0.84
2015 Vanderwerf SM, Buck DC, Wilmarth PA, Sears LM, David LL, Morton DB, Neve KA. Role for Rab10 in Methamphetamine-Induced Behavior. Plos One. 10: e0136167. PMID 26291453 DOI: 10.1371/Journal.Pone.0136167  1
2014 Chang JC, Hazelett DJ, Stewart JA, Morton DB. Motor neuron expression of the voltage-gated calcium channel cacophony restores locomotion defects in a Drosophila, TDP-43 loss of function model of ALS. Brain Research. 1584: 39-51. PMID 24275199 DOI: 10.1016/J.Brainres.2013.11.019  1
2013 Brown KM, Day JP, Huston E, Zimmermann B, Hampel K, Christian F, Romano D, Terhzaz S, Lee LC, Willis MJ, Morton DB, Beavo JA, Shimizu-Albergine M, Davies SA, Kolch W, et al. Phosphodiesterase-8A binds to and regulates Raf-1 kinase. Proceedings of the National Academy of Sciences of the United States of America. 110: E1533-42. PMID 23509299 DOI: 10.1073/Pnas.1303004110  1
2012 Hazelett DJ, Chang JC, Lakeland DL, Morton DB. Comparison of parallel high-throughput RNA sequencing between knockout of TDP-43 and its overexpression reveals primarily nonreciprocal and nonoverlapping gene expression changes in the central nervous system of Drosophila. G3 (Bethesda, Md.). 2: 789-802. PMID 22870402 DOI: 10.1534/G3.112.002998  1
2011 Vermehren-Schmaedick A, Scudder C, Timmermans W, Morton DB. Drosophila gustatory preference behaviors require the atypical soluble guanylyl cyclases. Journal of Comparative Physiology. a, Neuroethology, Sensory, Neural, and Behavioral Physiology. 197: 717-27. PMID 21350862 DOI: 10.1007/S00359-011-0634-9  1
2011 Morton DB. Behavioral responses to hypoxia and hyperoxia in Drosophila larvae: molecular and neuronal sensors. Fly. 5: 119-25. PMID 21150317 DOI: 10.4161/Fly.5.2.14284  1
2011 Saha D, Morton D, Ariel M, Wessel R. Response properties of visual neurons in the turtle nucleus isthmi. Journal of Comparative Physiology. a, Neuroethology, Sensory, Neural, and Behavioral Physiology. 197: 153-65. PMID 20967450 DOI: 10.1007/S00359-010-0596-3  1
2010 Vermehren-Schmaedick A, Ainsley JA, Johnson WA, Davies SA, Morton DB. Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases. Genetics. 186: 183-96. PMID 20592263 DOI: 10.1534/Genetics.110.118166  1
2010 Morton DB, Clemens-Grisham R, Hazelett DJ, Vermehren-Schmaedick A. Infertility and male mating behavior deficits associated with Pde1c in Drosophila melanogaster. Genetics. 186: 159-65. PMID 20551439 DOI: 10.1534/Genetics.110.118018  1
2009 Zimmer M, Gray JM, Pokala N, Chang AJ, Karow DS, Marletta MA, Hudson ML, Morton DB, Chronis N, Bargmann CI. Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron. 61: 865-79. PMID 19323996 DOI: 10.1016/J.Neuron.2009.02.013  1
2008 Morton DB, Stewart JA, Langlais KK, Clemens-Grisham RA, Vermehren A. Synaptic transmission in neurons that express the Drosophila atypical soluble guanylyl cyclases, Gyc-89Da and Gyc-89Db, is necessary for the successful completion of larval and adult ecdysis. The Journal of Experimental Biology. 211: 1645-56. PMID 18456892 DOI: 10.1242/Jeb.014472  1
2007 Morton DB, Vermehren A. Soluble Guanylyl Cyclases in Invertebrates: Targets for NO and O(2). Advances in Experimental Biology. 1: 65-82. PMID 19122779 DOI: 10.1016/S1872-2423(07)01003-4  1
2006 Vermehren A, Langlais KK, Morton DB. Oxygen-sensitive guanylyl cyclases in insects and their potential roles in oxygen detection and in feeding behaviors. Journal of Insect Physiology. 52: 340-8. PMID 16427074 DOI: 10.1016/J.Jinsphys.2005.12.001  1
2005 Morton DB, Langlais KK, Stewart JA, Vermehren A. Comparison of the properties of the five soluble guanylyl cyclase subunits in Drosophila melanogaster. Journal of Insect Science (Online). 5: 12. PMID 16341244 DOI: 10.1093/Jis/5.1.12  1
2004 Morton DB. Atypical soluble guanylyl cyclases in Drosophila can function as molecular oxygen sensors. The Journal of Biological Chemistry. 279: 50651-3. PMID 15485853 DOI: 10.1074/Jbc.C400461200  1
2004 Langlais KK, Stewart JA, Morton DB. Preliminary characterization of two atypical soluble guanylyl cyclases in the central and peripheral nervous system of Drosophila melanogaster. The Journal of Experimental Biology. 207: 2323-38. PMID 15159437 DOI: 10.1242/Jeb.01025  1
2004 Morton DB. Invertebrates yield a plethora of atypical guanylyl cyclases. Molecular Neurobiology. 29: 97-116. PMID 15126679 DOI: 10.1385/Mn:29:2:097  1
2003 Morton DB, Anderson EJ. MsGC-beta3 forms active homodimers and inactive heterodimers with NO-sensitive soluble guanylyl cyclase subunits. The Journal of Experimental Biology. 206: 937-47. PMID 12582136 DOI: 10.1242/Jeb.00160  1
2003 Morton DB, Nighorn A. MsGC-II, a receptor guanylyl cyclase isolated from the CNS of Manduca sexta that is inhibited by calcium. Journal of Neurochemistry. 84: 363-72. PMID 12558998 DOI: 10.1046/J.1471-4159.2003.01528.X  1
2002 Morton DB, Simpson PJ. Cellular signaling in eclosion hormone action. Journal of Insect Physiology. 48: 1-13. PMID 12770127 DOI: 10.1016/S0022-1910(01)00157-3  1
2002 Zayas RM, Qazi S, Morton DB, Trimmer BA. Nicotinic-acetylcholine receptors are functionally coupled to the nitric oxide/cGMP-pathway in insect neurons. Journal of Neurochemistry. 83: 421-31. PMID 12423252 DOI: 10.1046/J.1471-4159.2002.01147.X  1
2002 Morton DB, Hudson ML. Cyclic GMP regulation and function in insects Advances in Insect Physiology. 29: 1-54. DOI: 10.1016/S0065-2806(02)29001-3  1
2001 Nighorn A, Simpson PJ, Morton DB. The novel guanylyl cyclase MsGC-I is strongly expressed in higher-order neuropils in the brain of Manduca sexta. The Journal of Experimental Biology. 204: 305-14. PMID 11136616  1
2000 Hesterlee S, Morton DB. Identification of the cellular target for eclosion hormone in the abdominal transverse nerves of the tobacco hornworm, Manduca sexta. The Journal of Comparative Neurology. 424: 339-55. PMID 10906707 DOI: 10.1002/1096-9861(20000821)424:2<339::Aid-Cne11>3.0.Co;2-Z  1
2000 Zayas RM, Qazi S, Morton DB, Trimmer BA. Neurons involved in nitric oxide-mediated cGMP signaling in the tobacco hornworm, Manduca sexta. The Journal of Comparative Neurology. 419: 422-38. PMID 10742713 DOI: 10.1002/(Sici)1096-9861(20000417)419:4<422::Aid-Cne2>3.0.Co;2-S  1
1999 Morton DB, Hudson ML, Waters E, O'Shea M. Soluble guanylyl cyclases in Caenorhabditis elegans: NO is not the answer. Current Biology : Cb. 9: R546-7. PMID 10469574 DOI: 10.1016/S0960-9822(99)80349-2  1
1999 Simpson PJ, Nighorn A, Morton DB. Identification of a novel guanylyl cyclase that is related to receptor guanylyl cyclases, but lacks extracellular and transmembrane domains. The Journal of Biological Chemistry. 274: 4440-6. PMID 9933648 DOI: 10.1074/Jbc.274.7.4440  1
1999 Nighorn A, Byrnes KA, Morton DB. Identification and characterization of a novel beta subunit of soluble guanylyl cyclase that is active in the absence of a second subunit and is relatively insensitive to nitric oxide. The Journal of Biological Chemistry. 274: 2525-31. PMID 9891024 DOI: 10.1074/Jbc.274.4.2525  1
1998 Nighorn A, Gibson NJ, Rivers DM, Hildebrand JG, Morton DB. The nitric oxide-cGMP pathway may mediate communication between sensory afferents and projection neurons in the antennal lobe of Manduca sexta. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 18: 7244-55. PMID 9736646 DOI: 10.1523/Jneurosci.18-18-07244.1998  1
1998 Morton DB, Bredt DS. Norepinephrine increases cyclic GMP levels in cerebellar cells from neuronal nitric oxide synthase knockout mice. Journal of Neurochemistry. 71: 440-3. PMID 9648894 DOI: 10.1046/J.1471-4159.1998.71010440.X  1
1997 Morton DB. Eclosion hormone action on the nervous system. Intracellular messengers and sites of action. Annals of the New York Academy of Sciences. 814: 40-50. PMID 9160958 DOI: 10.1111/J.1749-6632.1997.Tb46143.X  1
1997 Mészáros M, Morton DB. Up- and downregulation of esr20, an ecdysteroid-regulated gene expressed in the tracheae of Manduca sexta. Archives of Insect Biochemistry and Physiology. 34: 159-74. PMID 9041697 DOI: 10.1002/(Sici)1520-6327(1997)34:2<159::Aid-Arch3>3.0.Co;2-S  1
1996 Morton DB. Neuropeptide-stimulated cyclic guanosine monophosphate immunoreactivity in the neurosecretory terminals of a neurohemal organ. Journal of Neurobiology. 29: 341-53. PMID 8907163 DOI: 10.1002/(Sici)1097-4695(199603)29:3<341::Aid-Neu6>3.0.Co;2-9  1
1996 Mészáros M, Morton DB. Expression of a developmentally regulated gene, Mng10, in identified neurosecretory cells in the CNS of Manduca sexta. Journal of Neurobiology. 30: 349-58. PMID 8807528 DOI: 10.1002/(Sici)1097-4695(199607)30:3<349::Aid-Neu4>3.0.Co;2-4  1
1996 Hesterlee S, Morton DB. Insect physiology: the emerging story of ecdysis. Current Biology : Cb. 6: 648-50. PMID 8793284 DOI: 10.1016/S0960-9822(09)00439-4  1
1996 Mészáros M, Morton DB. Comparison of the expression patterns of five developmentally regulated genes in Manduca sexta and their regulation by 20-hydroxyecdysone in vitro. The Journal of Experimental Biology. 199: 1555-61. PMID 8699157  1
1996 Mészáros M, Morton DB. Subtractive hybridization strategy using paramagnetic oligo(dT) beads and PCR. Biotechniques. 20: 413-9. PMID 8679200 DOI: 10.2144/19962003413  1
1996 Mészáros M, Morton DB. Identification of a developmentally regulated gene, esr16, in the tracheal epithelium of Manduca sexta, with homology to a protein from human epididymis. Insect Biochemistry and Molecular Biology. 26: 7-11. PMID 8673080 DOI: 10.1016/0965-1748(95)00077-1  1
1995 Morton DB, Truman JW. Effect of cycloheximide on eclosion hormone sensitivity and the developmental appearance of the eclosion hormone and cGMP regulated phosphoproteins in the CNS of the tobacco hornworm, Manduca sexta. Journal of Receptor and Signal Transduction Research. 15: 773-86. PMID 8747886 DOI: 10.3109/10799899509079906  1
1995 Morton DB, Simpson PJ. Eclosion hormone-stimulated cGMP levels in the central nervous system of Manduca sexta: inhibition by lipid metabolism blockers, increase in inositol(1,4,5)trisphosphate and further evidence against the involvement of nitric oxide. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology. 165: 417-27. PMID 8576454 DOI: 10.1007/BF00261295  1
1995 Levine RB, Morton DB, Restifo LL. Remodeling of the insect nervous system. Current Opinion in Neurobiology. 5: 28-35. PMID 7773002 DOI: 10.1016/0959-4388(95)80083-2  1
1994 Mészáros M, Morton DB. Isolation and partial characterization of a gene from trachea of Manduca sexta that requires and is negatively regulated by ecdysteroids. Developmental Biology. 162: 618-30. PMID 8150220 DOI: 10.1006/Dbio.1994.1115  1
1994 Krull CE, Morton DB, Faissner A, Schachner M, Tolbert LP. Spatiotemporal pattern of expression of tenascin-like molecules in a developing insect olfactory system. Journal of Neurobiology. 25: 515-34. PMID 7520933 DOI: 10.1002/Neu.480250506  1
1992 Morton DB, Giunta MA. Eclosion hormone stimulates cyclic GMP levels in Manduca sexta nervous tissue via arachidonic acid metabolism with little or no contribution from the production of nitric oxide. Journal of Neurochemistry. 59: 1522-30. PMID 1357096 DOI: 10.1111/J.1471-4159.1992.Tb08469.X  1
1991 Eldridge R, Horodyski FM, Morton DB, O'Reilly DR, Truman JW, Riddiford LM, Miller LK. Expression of an eclosion hormone gene in insect cells using baculovirus vectors Insect Biochemistry. 21: 341-351. DOI: 10.1016/0020-1790(91)90025-A  1
1990 Truman JW, Morton DB. The eclosion hormone system: an example of coordination of endocrine activity during the molting cycle of insects. Progress in Clinical and Biological Research. 342: 300-8. PMID 2200008  1
1988 Morton DB, Truman JW. The EGPs: the eclosion hormone and cyclic GMP-regulated phosphoproteins. II. Regulation of appearance by the steroid hormone 20-hydroxyecdysone in Manduca sexta. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 8: 1338-45. PMID 2833583 DOI: 10.1523/Jneurosci.08-04-01338.1988  1
1988 Morton DB, Truman JW. The EGPs: the eclosion hormone and cyclic GMP-regulated phosphoproteins. I. Appearance and partial characterization in the CNS of Manduca sexta. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 8: 1326-37. PMID 2833582 DOI: 10.1523/Jneurosci.08-04-01326.1988  1
1986 Morton DB, Truman JW. Substrate phosphoprotein availability regulates eclosion hormone sensitivity in an insect CNS. Nature. 323: 264-7. PMID 3020427 DOI: 10.1038/323264A0  1
1985 Morton DB, Truman JW. Steroid regulation of the peptide-mediated increase in cyclic GMP in the nervous system of the hawkmoth, Manduca sexta. Journal of Comparative Physiology. a, Sensory, Neural, and Behavioral Physiology. 157: 423-32. PMID 2426446 DOI: 10.1007/Bf00615142  1
1985 Davenport AP, Morton DB, Evans PD. The action of formamidines on octopamine receptors in the locust Pesticide Biochemistry and Physiology. 24: 45-52. DOI: 10.1016/0048-3575(85)90112-9  1
1984 Morton DB. Pharmacology of the octopamine-stimulated adenylate cyclase of the locust and tick CNS. Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology. 78: 153-8. PMID 6146464 DOI: 10.1016/0742-8413(84)90063-X  1
1984 Morton DB, Evans PD. Octopamine release from an identified neurone in the locust Journal of Experimental Biology. 269-287.  1
1983 Morton DB, Evans PD. Octopamine distribution in solitarious and gregarious forms of the locust, Schistocerca Americana gregaria Insect Biochemistry. 13: 177-183. DOI: 10.1016/0020-1790(83)90081-1  1
Show low-probability matches.