Year |
Citation |
Score |
2019 |
Kim J, Leahy W, Shlizerman E. Neural Interactome: Interactive Simulation of a Neuronal System. Frontiers in Computational Neuroscience. 13: 8. PMID 30930759 DOI: 10.3389/Fncom.2019.00008 |
0.395 |
|
2018 |
Liu H, Kim J, Shlizerman E. Functional connectomics from neural dynamics: probabilistic graphical models for neuronal network of . Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 373. PMID 30201841 DOI: 10.1098/Rstb.2017.0377 |
0.41 |
|
2017 |
Barreiro AK, Kutz JN, Shlizerman E. Symmetries Constrain Dynamics in a Family of Balanced Neural Networks. Journal of Mathematical Neuroscience. 7: 10. PMID 29019105 DOI: 10.1186/S13408-017-0052-6 |
0.369 |
|
2017 |
Blaszka D, Sanders E, Riffell JA, Shlizerman E. Classification of Fixed Point Network Dynamics from Multiple Node Timeseries Data. Frontiers in Neuroinformatics. 11: 58. PMID 28979202 DOI: 10.3389/Fninf.2017.00058 |
0.348 |
|
2017 |
Kunert-Graf JM, Shlizerman E, Walker A, Kutz JN. Multistability and Long-Timescale Transients Encoded by Network Structure in a Model of C. elegans Connectome Dynamics. Frontiers in Computational Neuroscience. 11: 53. PMID 28659783 DOI: 10.3389/Fncom.2017.00053 |
0.423 |
|
2016 |
Shlizerman E, Phillips-Portillo J, Forger DB, Reppert SM. Neural Integration Underlying a Time-Compensated Sun Compass in the Migratory Monarch Butterfly. Cell Reports. PMID 27149852 DOI: 10.1016/J.Celrep.2016.03.057 |
0.319 |
|
2015 |
Barreiro AK, Kutz JN, Shlizerman E. Symmetries constrain the transition to heterogeneous chaos in balanced networks Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P229 |
0.373 |
|
2015 |
Santos J, Shlizerman E. Closing the loop: optimal stimulation of C. elegans neuronal network via adaptive control to exhibit full body movements Bmc Neuroscience. 16: 1-2. DOI: 10.1186/1471-2202-16-S1-O14 |
0.348 |
|
2014 |
Kunert J, Shlizerman E, Kutz JN. Low-dimensional functionality of complex network dynamics: neurosensory integration in the Caenorhabditis Elegans connectome. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 89: 052805. PMID 25353842 DOI: 10.1103/Physreve.89.052805 |
0.415 |
|
2014 |
Shlizerman E, Riffell JA, Kutz JN. Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe. Frontiers in Computational Neuroscience. 8: 70. PMID 25165442 DOI: 10.3389/Fncom.2014.00070 |
0.382 |
|
2013 |
Kunert J, Shlizerman E, Kutz JN. Investigating dynamical properties of the Caenorhabditis elegans connectome through full-network simulations Bmc Neuroscience. 14: 229. DOI: 10.1186/1471-2202-14-S1-P229 |
0.394 |
|
2012 |
Ding E, Renninger WH, Wise FW, Grelu P, Shlizerman E, Kutz JN. High-Energy Passive Mode-Locking of Fiber Lasers. International Journal of Optics. 2012. PMID 22866059 DOI: 10.1155/2012/354156 |
0.334 |
|
2012 |
Shlizerman E, Holmes P. Neural dynamics, bifurcations, and firing rates in a quadratic integrate-and-fire model with a recovery variable. I: Deterministic behavior. Neural Computation. 24: 2078-118. PMID 22509966 DOI: 10.1162/Neco_A_00308 |
0.361 |
|
2012 |
Shlizerman E, Riffell J, Kutz JN. Modeling the dynamics of neural codes in the olfaction of the Manduca-sexta moth Bmc Neuroscience. 13. DOI: 10.1186/1471-2202-13-S1-O18 |
0.4 |
|
2012 |
Shlizerman E, Ding E, Williams MO, Kutz JN. The proper orthogonal decomposition for dimensionality reduction in mode-locked lasers and optical systems International Journal of Optics. 2012. DOI: 10.1155/2012/831604 |
0.402 |
|
2012 |
Williams MO, Shlizerman E, Wilkening J, Kutz JN. The low dimensionality of time-periodic standing waves in water of finite and infinite depth Siam Journal On Applied Dynamical Systems. 11: 1033-1061. DOI: 10.1137/11084621X |
0.349 |
|
2012 |
Shlizerman E, Schroder K, Kutz JN. Neural activity measures and their dynamics Siam Journal On Applied Mathematics. 72: 1260-1291. DOI: 10.1137/110843630 |
0.401 |
|
2011 |
Williams MO, Shlizerman E, Kutz JN. A Reduced Dimensional Model for the Multi-Pulsing Transition in a Waveguide Array Mode-Locked Laser Nonlinear Optics. DOI: 10.1364/Nlo.2011.Nwe22 |
0.385 |
|
2011 |
Shlizerman E, Ding E, Williams MO, Kutz JN. Characterizing and suppressing multi-pulsing instabilities in mode-locked lasers Proceedings of Spie - the International Society For Optical Engineering. 7933. DOI: 10.1117/12.873970 |
0.392 |
|
2011 |
Ding E, Shlizerman E, Kutz JN. Energy enhancement in mode-locked lasers using sinusoidal transmission functions for saturable absorption Proceedings of Spie - the International Society For Optical Engineering. 7933. DOI: 10.1117/12.873874 |
0.388 |
|
2011 |
Ding E, Shlizerman E, Kutz JN. Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg-Landau equation Ieee Journal of Quantum Electronics. 47: 705-714. DOI: 10.1109/Jqe.2011.2112337 |
0.4 |
|
2011 |
Williams MO, Wilkening J, Shlizerman E, Kutz JN. Continuation of periodic solutions in the waveguide array mode-locked laser Physica D: Nonlinear Phenomena. 240: 1791-1804. DOI: 10.1016/J.Physd.2011.06.018 |
0.394 |
|
2010 |
Williams MO, Shlizerman E, Kutz JN. The multi-pulsing transition in mode-locked lasers: A low-dimensional approach using waveguide arrays Journal of the Optical Society of America B: Optical Physics. 27: 2471-2481. DOI: 10.1364/Josab.27.002471 |
0.38 |
|
2010 |
Ding E, Shlizerman E, Kutz JN. Modeling multipulsing transition in ring cavity lasers with proper orthogonal decomposition Physical Review a - Atomic, Molecular, and Optical Physics. 82. DOI: 10.1103/Physreva.82.023823 |
0.382 |
|
2010 |
Shlizerman E, Rom-Kedar V. Classification of solutions of the forced periodic nonlinear Schrödinger equation Nonlinearity. 23: 2183-2218. DOI: 10.1088/0951-7715/23/9/008 |
0.342 |
|
2009 |
Shlizerman E, Rom-Kedar V. Parabolic resonance: a route to hamiltonian spatiotemporal chaos. Physical Review Letters. 102: 033901. PMID 19257354 DOI: 10.1103/Physrevlett.102.033901 |
0.333 |
|
2006 |
Shlizerman E, Rom-Kedar V. Three types of chaos in the forced nonlinear Schrödinger equation. Physical Review Letters. 96: 024104. PMID 16486583 DOI: 10.1103/Physrevlett.96.024104 |
0.314 |
|
2005 |
Shlizerman E, Rom-Kedar V. Hierarchy of bifurcations in the truncated and forced nonlinear Schrödinger model. Chaos (Woodbury, N.Y.). 15: 13107. PMID 15836261 DOI: 10.1063/1.1831591 |
0.341 |
|
Show low-probability matches. |