Paul M. Horowitz - Publications

Affiliations: 
Biochemistry University of Texas Health Science Center at San Antonio, San Antonio, TX, United States 

121 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2004 Kaur Y, Horowitz PM. Prodan fluorescence mimics the GroEL folding cycle. The Protein Journal. 23: 475-81. PMID 15635940 DOI: 10.1007/S10930-004-5224-Z  0.386
2004 Kaur Y, Ybarra J, Horowitz PM. Active rhodanese lacking nonessential sulfhydryl groups has increased hydrophobic exposure not observed in wild-type enzyme. The Protein Journal. 23: 255-61. PMID 15214496 DOI: 10.1023/B:Jopc.0000027850.01893.2E  0.387
2003 Ybarra J, Bhattacharyya AM, Panda M, Horowitz PM. Active rhodanese lacking nonessential sulfhydryl groups contains an unstable C-terminal domain and can be bound, inactivated, and reactivated by GroEL. The Journal of Biological Chemistry. 278: 1693-9. PMID 12433928 DOI: 10.1074/Jbc.M207574200  0.343
2002 Kramer G, Ramachandiran V, Horowitz PM, Hardesty B. The molecular chaperone DnaK is not recruited to translating ribosomes that lack trigger factor. Archives of Biochemistry and Biophysics. 403: 63-70. PMID 12061803 DOI: 10.1016/S0003-9861(02)00213-8  0.329
2002 Ramachandiran V, Kramer G, Horowitz PM, Hardesty B. Single synonymous codon substitution eliminates pausing during chloramphenicol acetyl transferase synthesis on Escherichia coli ribosomes in vitro. Febs Letters. 512: 209-12. PMID 11852081 DOI: 10.1016/S0014-5793(02)02261-5  0.31
2002 Bhattacharyya AM, Horowitz PM. Rhodanese can partially refold in its GroEL-GroES-ADP complex and can be released to give a homogeneous product. Biochemistry. 41: 2421-8. PMID 11841236 DOI: 10.1021/Bi0115378  0.413
2002 Panda M, Horowitz PM. Conformational heterogeneity is revealed in the dissociation of the oligomeric chaperonin GroEL by high hydrostatic pressure. Biochemistry. 41: 1869-76. PMID 11827532 DOI: 10.1021/Bi011794C  0.31
2002 Bhattacharyya AM, Horowitz PM. Isolation and characterization of rhodanese intermediates during thermal inactivation and their implications for the mechanism of protein aggregation. Biochemistry. 41: 422-9. PMID 11772042 DOI: 10.1021/Bi011726Q  0.41
2001 Panda M, Smoot AL, Horowitz PM. The 4,4'-dipyridyl disulfide-induced formation of GroEL monomers is cooperative and leads to increased hydrophobic exposure. Biochemistry. 40: 10402-10. PMID 11513619 DOI: 10.1021/Bi010831X  0.388
2001 Bhattacharyya AM, Horowitz PM. The aggregation state of rhodanese during folding influences the ability of GroEL to assist reactivation. The Journal of Biological Chemistry. 276: 28739-43. PMID 11397797 DOI: 10.1074/Jbc.M102500200  0.404
2001 Kramer G, Ramachandiran V, Horowitz P, Hardesty B. An additional serine residue at the C terminus of rhodanese destabilizes the enzyme. Archives of Biochemistry and Biophysics. 385: 332-7. PMID 11368014 DOI: 10.1006/Abbi.2000.2166  0.403
2001 Smoot AL, Panda M, Brazil BT, Buckle AM, Fersht AR, Horowitz PM. The binding of bis-ANS to the isolated GroEL apical domain fragment induces the formation of a folding intermediate with increased hydrophobic surface not observed in tetradecameric GroEL. Biochemistry. 40: 4484-92. PMID 11284705 DOI: 10.1021/Bi001822B  0.396
2001 Panda M, Ybarra J, Horowitz PM. High hydrostatic pressure can probe the effects of functionally related ligands on the quaternary structures of the chaperonins GroEL and GroES. The Journal of Biological Chemistry. 276: 6253-9. PMID 11085994 DOI: 10.1074/Jbc.M009530200  0.335
2000 Panda M, Horowitz PM. Active-site sulfhydryl chemistry plays a major role in the misfolding of urea-denatured rhodanese. Journal of Protein Chemistry. 19: 399-409. PMID 11131146 DOI: 10.1023/A:1026491615076  0.413
2000 Bhattacharyya AM, Horowitz P. Alteration around the active site of rhodanese during urea-induced denaturation and its implications for folding. The Journal of Biological Chemistry. 275: 14860-4. PMID 10809729 DOI: 10.1074/Jbc.275.20.14860  0.454
2000 Nandi DL, Horowitz PM, Westley J. Rhodanese as a thioredoxin oxidase. The International Journal of Biochemistry & Cell Biology. 32: 465-73. PMID 10762072 DOI: 10.1016/S1357-2725(99)00035-7  0.353
2000 Panda M, Gorovits BM, Horowitz PM. Productive and nonproductive intermediates in the folding of denatured rhodanese. The Journal of Biological Chemistry. 275: 63-70. PMID 10617586 DOI: 10.1074/Jbc.275.1.63  0.358
1999 Shibatani T, Kramer G, Hardesty B, Horowitz PM. Domain separation precedes global unfolding of rhodanese. The Journal of Biological Chemistry. 274: 33795-9. PMID 10559274 DOI: 10.1074/Jbc.274.47.33795  0.366
1999 Jai EA, Horowitz PM. Nucleotide and Mg2+ induced conformational changes in GroEL can be detected by sulfhydryl labeling. Journal of Protein Chemistry. 18: 387-96. PMID 10395457 DOI: 10.1023/A:1021055932648  0.38
1999 Trevino RJ, Gliubich F, Berni R, Cianci M, Chirgwin JM, Zanotti G, Horowitz PM. NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions. The Journal of Biological Chemistry. 274: 13938-47. PMID 10318804 DOI: 10.1074/Jbc.274.20.13938  0.404
1999 Horowitz PM, Lorimer GH, Ybarra J. GroES in the asymmetric GroEL14-GroES7 complex exchanges via an associative mechanism Proceedings of the National Academy of Sciences of the United States of America. 96: 2682-2686. PMID 10077571 DOI: 10.1073/Pnas.96.6.2682  0.31
1998 Trevino RJ, Tsalkova T, Kramer G, Hardesty B, Chirgwin JM, Horowitz PM. Truncations at the NH2 terminus of rhodanese destabilize the enzyme and decrease its heterologous expression. The Journal of Biological Chemistry. 273: 27841-7. PMID 9774394 DOI: 10.1074/Jbc.273.43.27841  0.394
1998 Gorovits BM, Horowitz PM. High hydrostatic pressure can reverse aggregation of protein folding intermediates and facilitate acquisition of native structure. Biochemistry. 37: 6132-5. PMID 9558352 DOI: 10.1021/Bi9730137  0.344
1998 Seale JW, Brazil BT, Horowitz PM. Photoincorporation of fluorescent probe into GroEL: defining site of interaction. Methods in Enzymology. 290: 318-23. PMID 9534172 DOI: 10.1016/S0076-6879(98)90028-3  0.395
1998 Gorovits BM, Horowitz PM. Fluorescence anisotropy method for investigation of GroEL-GroES interaction. Methods in Enzymology. 290: 313-7. PMID 9534171 DOI: 10.1016/S0076-6879(98)90027-1  0.384
1998 Gorovits BM, McGee WA, Horowitz PM. Rhodanese folding is controlled by the partitioning of its folding intermediates. Biochimica Et Biophysica Acta. 1382: 120-8. PMID 9507086 DOI: 10.1016/S0167-4838(97)00158-1  0.448
1998 Brazil BT, Ybarra J, Horowitz PM. Divalent cations can induce the exposure of GroEL hydrophobic surfaces and strengthen GroEL hydrophobic binding interactions. Novel effects of Zn2+ GroEL interactions. The Journal of Biological Chemistry. 273: 3257-63. PMID 9452440 DOI: 10.1074/Jbc.273.6.3257  0.393
1997 Narayanasami R, Nishimura JS, McMillan K, Roman LJ, Shea TM, Robida AM, Horowitz PM, Masters BS. The influence of chaotropic reagents on neuronal nitric oxide synthase and its flavoprotein module. Urea and guanidine hydrochloride stimulate NADPH-cytochrome c reductase activity of both proteins. Nitric Oxide : Biology and Chemistry / Official Journal of the Nitric Oxide Society. 1: 39-49. PMID 9701043 DOI: 10.1006/Niox.1996.0103  0.401
1997 Gorovits BM, Ybarra J, Seale JW, Horowitz PM. Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides. The Journal of Biological Chemistry. 272: 26999-7004. PMID 9341138 DOI: 10.1074/Jbc.272.43.26999  0.436
1997 Seale JW, Chirgwin JM, Demeler B, Horowitz PM. Preformed GroES oligomers are not required as functional cochaperonins. Journal of Protein Chemistry. 16: 661-8. PMID 9330224 DOI: 10.1023/A:1026350303043  0.338
1997 Gorovits BM, Ybarra J, Horowitz PM. ATP hydrolysis is critical for induction of conformational changes in GroEL that expose hydrophobic surfaces. The Journal of Biological Chemistry. 272: 6842-5. PMID 9054367 DOI: 10.1074/Jbc.272.11.6842  0.398
1997 Brazil BT, Cleland JL, McDowell RS, Skelton NJ, Paris K, Horowitz PM. Model peptide studies demonstrate that amphipathic secondary structures can be recognized by the chaperonin GroEL (cpn60). The Journal of Biological Chemistry. 272: 5105-11. PMID 9030576 DOI: 10.1074/Jbc.272.8.5105  0.341
1997 Gorovits BM, Horowitz PM. Conditions of forming protein complexes with GroEL can influence the mechanism of chaperonin-assisted refolding. The Journal of Biological Chemistry. 272: 32-5. PMID 8995221 DOI: 10.1074/Jbc.272.1.32  0.449
1996 Gibbons DL, Hixson JD, Hay N, Lund P, Gorovits BM, Ybarra J, Horowitz PM. Intrinsic fluorescence studies of the chaperonin GroEL containing single Tyr --> Trp replacements reveal ligand-induced conformational changes. The Journal of Biological Chemistry. 271: 31989-95. PMID 8943246 DOI: 10.1074/Jbc.271.50.31989  0.418
1996 Ybarra J, Horowitz PM. Nucleotides reveal polynucleotide phosphorylase activity from conventionally purified GroEL. The Journal of Biological Chemistry. 271: 25063-6. PMID 8810258 DOI: 10.1074/Jbc.271.41.25063  0.354
1996 Seale JW, Gorovits BM, Ybarra J, Horowitz PM. Reversible oligomerization and denaturation of the chaperonin GroES. Biochemistry. 35: 4079-83. PMID 8672442 DOI: 10.1021/Bi953087N  0.43
1996 Gibbons DL, Horowitz PM. Ligand-induced conformational changes in the apical domain of the chaperonin GroEL. The Journal of Biological Chemistry. 271: 238-43. PMID 8550566 DOI: 10.1074/Jbc.271.1.238  0.383
1995 Trevino RJ, Hunt J, Horowitz PM, Chirgwin JM. Chinese hamster rhodanese cDNA: activity of the expressed protein is not blocked by a C-terminal extension. Protein Expression and Purification. 6: 693-9. PMID 8535164 DOI: 10.1006/Prep.1995.1091  0.415
1995 Seale JW, Horowitz PM. The C-terminal sequence of the chaperonin GroES is required for oligomerization. The Journal of Biological Chemistry. 270: 30268-70. PMID 8530444 DOI: 10.1074/Jbc.270.51.30268  0.339
1995 Narayanasami R, Horowitz PM, Masters BS. Flavin-binding and protein structural integrity studies on NADPH-cytochrome P450 reductase are consistent with the presence of distinct domains. Archives of Biochemistry and Biophysics. 316: 267-74. PMID 7840627 DOI: 10.1006/Abbi.1995.1037  0.433
1995 Gorovits B, Raman CS, Horowitz PM. High hydrostatic pressure induces the dissociation of cpn60 tetradecamers and reveals a plasticity of the monomers. The Journal of Biological Chemistry. 270: 2061-6. PMID 7836434 DOI: 10.1074/Jbc.270.5.2061  0.355
1995 Horowitz PM, Hua S, Gibbons DL. Hydrophobic surfaces that are hidden in chaperonin Cpn60 can be exposed by formation of assembly-competent monomers or by ionic perturbation of the oligomer. The Journal of Biological Chemistry. 270: 1535-42. PMID 7829481 DOI: 10.1074/Jbc.270.4.1535  0.44
1995 Seale JW, Martinez JL, Horowitz PM. Photoincorporation of 4,4'-bis(1-anilino-8-naphthalenesulfonic acid) into the apical domain of GroEL: specific information from a nonspecific probe. Biochemistry. 34: 7443-9. PMID 7779787 DOI: 10.1021/Bi00022A018  0.415
1995 Gorovits BM, Horowitz PM. The molecular chaperonin cpn60 displays local flexibility that is reduced after binding with an unfolded protein. The Journal of Biological Chemistry. 270: 13057-62. PMID 7768899 DOI: 10.1074/Jbc.270.22.13057  0.384
1995 Kudlicki W, Odom OW, Kramer G, Hardesty B, Merrill GA, Horowitz PM. The importance of the N-terminal segment for DnaJ-mediated folding of rhodanese while bound to ribosomes as peptidyl-tRNA. The Journal of Biological Chemistry. 270: 10650-7. PMID 7738002 DOI: 10.1074/Jbc.270.18.10650  0.361
1995 Gibbons DL, Horowitz PM. Exposure of hydrophobic surfaces on the chaperonin GroEL oligomer by protonation or modification of His-401. The Journal of Biological Chemistry. 270: 7335-40. PMID 7706275 DOI: 10.1074/Jbc.270.13.7335  0.429
1995 Mendoza JA, Martinez JL, Horowitz PM. Tetradecameric chaperonin 60 can be assembled in vitro from monomers in a process that is ATP independent. Biochimica Et Biophysica Acta. 1247: 209-14. PMID 7696310 DOI: 10.1016/0167-4838(94)00231-5  0.324
1995 Ybarra J, Horowitz PM. Refolding and reassembly of active chaperonin GroEL after denaturation. The Journal of Biological Chemistry. 270: 22113-5. PMID 7673187 DOI: 10.1074/Jbc.270.38.22113  0.415
1995 Horowitz PM. Chaperonin-assisted protein folding of the enzyme rhodanese by GroEL/GroES. Methods in Molecular Biology (Clifton, N.J.). 40: 361-8. PMID 7633531 DOI: 10.1385/0-89603-301-5:361  0.399
1995 Horowitz PM, Hua S. Rhodanese conformational changes permit oxidation to give disulfides that form in a kinetically determined sequence. Biochimica Et Biophysica Acta. 1249: 161-7. PMID 7599169 DOI: 10.1016/0167-4838(95)00037-U  0.396
1995 Gorovits BM, Seale JW, Horowitz PM. Residual structure in urea-denatured chaperonin GroEL. Biochemistry. 34: 13928-33. PMID 7577988 DOI: 10.1021/Bi00042A026  0.422
1995 Ybarra J, Horowitz PM. Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides. The Journal of Biological Chemistry. 270: 22962-7. PMID 7559433 DOI: 10.1074/Jbc.270.39.22962  0.422
1995 Luo GX, Hua S, Horowitz PM. Mutation in the interdomain tether influences the stability and refolding of the enzyme rhodanese. Biochimica Et Biophysica Acta. 1252: 165-71. PMID 7548160 DOI: 10.1016/0167-4838(95)00131-D  0.393
1995 Gorovits BM, Horowitz PM. The chaperonin GroEL is destabilized by binding of ADP. The Journal of Biological Chemistry. 270: 28551-6. PMID 7499369 DOI: 10.1074/Jbc.270.48.28551  0.45
1994 Zardeneta G, Horowitz PM. Protein refolding at high concentrations using detergent/phospholipid mixtures. Analytical Biochemistry. 218: 392-8. PMID 8074298 DOI: 10.1006/Abio.1994.1197  0.411
1994 Mendoza JA, Horowitz PM. The chaperonin assisted and unassisted refolding of rhodanese can be modulated by its N-terminal peptide Journal of Protein Chemistry. 13: 15-22. PMID 8011067 DOI: 10.1007/Bf01891988  0.344
1994 Georgiou G, Valax P, Ostermeier M, Horowitz PM. Folding and aggregation of TEM beta-lactamase: analogies with the formation of inclusion bodies in Escherichia coli. Protein Science : a Publication of the Protein Society. 3: 1953-60. PMID 7703842 DOI: 10.1002/Pro.5560031107  0.374
1994 Zardeneta G, Horowitz PM. Detergent, liposome, and micelle-assisted protein refolding. Analytical Biochemistry. 223: 1-6. PMID 7695083 DOI: 10.1006/Abio.1994.1537  0.324
1993 Jarabak R, Westley J, Dungan JM, Horowitz P. A chaperone-mimetic effect of serum albumin on rhodanese. Journal of Biochemical Toxicology. 8: 41-48. PMID 8492302 DOI: 10.1002/Jbt.2570080107  0.334
1993 Mendoza JA, Grant E, Horowitz PM. Partially folded rhodanese or its N-terminal sequence can disrupt phospholipid vesicles Journal of Protein Chemistry. 12: 65-69. PMID 8427635 DOI: 10.1007/Bf01024916  0.367
1993 Dungan JM, Horowitz PM. Thermally perturbed rhodanese can be protected from inactivation by self-association Journal of Protein Chemistry. 12: 311-321. PMID 8397789 DOI: 10.1007/Bf01028193  0.41
1993 Zardeneta G, Horowitz PM. Physical characterization of a reactivatable liposome-bound rhodanese folding intermediate Biochemistry. 32: 13941-13948. PMID 8268170 DOI: 10.1021/bi00213a025  0.372
1993 Tsalkova T, Zardeneta G, Kudlicki W, Kramer G, Horowitz PM, Hardesty B. GroEL and GroES increase the specific enzymatic activity of newly-synthesized rhodanese if present during in vitro transcription/translation. Biochemistry. 32: 3377-80. PMID 8096394 DOI: 10.1021/Bi00064A022  0.376
1992 Miller DM, Kurzban GP, Mendoza JA, Chirgwin JM, Hardies SC, Horowitz PM. Recombinant bovine rhodanese: purification and comparison with bovine liver rhodanese Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 1121: 286-292. PMID 1627606 DOI: 10.1016/0167-4838(92)90158-A  0.426
1992 Zardeneta G, Horowitz PM. Cardiolipin liposomes sequester a reactivatable partially folded rhodanese intermediate European Journal of Biochemistry. 210: 831-837. PMID 1483467 DOI: 10.1111/J.1432-1033.1992.Tb17486.X  0.467
1992 Yeh LCC, Horowitz PM, Lee JC. Yeast 5S rRNA binding to ribosomal protein L1a alters the fluorescence of tryptophan residues lying outside the binding site Biochimie. 74: 1025-1030. PMID 1477137 DOI: 10.1016/0300-9084(92)90023-8  0.387
1992 Merrill GA, Miller D, Chirgwin J, Horowitz PM. Immunological evidence for a conformational difference between recombinant bovine rhodanese and rhodanese purified from bovine liver Journal of Protein Chemistry. 11: 193-199. PMID 1382437 DOI: 10.1007/Bf01025225  0.377
1992 Mendoza JA, Horowitz PM. Sulfhydryl modification of E. coli cpn60 leads to loss of its ability to support refolding of rhodanese but not to form a binary complex Journal of Protein Chemistry. 11: 589-594. PMID 1361328 DOI: 10.1007/Bf01024958  0.394
1992 Zardeneta G, Horowitz P. Micelle-assisted protein folding. Denatured rhodanese binding to cardiolipin-containing lauryl maltoside micelles results in slower refolding kinetics but greater enzyme reactivation. Journal of Biological Chemistry. 267: 5811-5816. DOI: 10.1016/s0021-9258(18)42625-7  0.368
1991 Kurzban GP, Horowitz PM. Purification of bovine liver rhodanese by low-pH column chromatography Protein Expression and Purification. 2: 379-384. PMID 1821812 DOI: 10.1016/1046-5928(91)90097-3  0.314
1991 Lee JC, Yeh LCC, Horowitz PM. The initiation codon AUG binds at a hydrophobic site on yeast 40S ribosomal subunits as revealed by fluorescence studies with bis (1,8-anilinonaphthalenesulfonate) Biochimie. 73: 1245-1247. PMID 1747389 DOI: 10.1016/0300-9084(91)90010-X  0.41
1990 Mock DM, Horowitz P. Fluorometric assay for avidin-biotin interaction Methods in Enzymology. 184: 234-240. PMID 2388573 DOI: 10.1016/0076-6879(90)84279-P  0.387
1990 Nishimura JS, Mann CJ, Ybarra J, Mitchell T, Horowitz PM. Intrinsic fluorescence of succinyl-CoA synthetase and four tryptophan mutants. Tryptophan 76 and tryptophan 248 of the β-subunit are responsive to CoA binding Biochemistry. 29: 862-865. PMID 2340278 DOI: 10.1021/Bi00456A002  0.329
1990 Aird BA, Horowitz PM. A physical characterization of sulfane sulfurtransferase Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 1038: 10-17. PMID 2317511 DOI: 10.1016/0167-4838(90)90003-X  0.43
1990 Kurzban GP, Gitlin G, Bayer EA, Wilchek M, Horowitz PM. Biotin binding changes the conformation and decreases tryptophan accessibility of streptavidin Journal of Protein Chemistry. 9: 673-682. PMID 2073320 DOI: 10.1007/Bf01024762  0.394
1989 King RJ, Simon D, Horowitz PM. Aspects of secondary and quaternary structure of surfactant protein A from canine lung. Biochimica Et Biophysica Acta. 1001: 294-301. PMID 2917154 DOI: 10.1016/0005-2760(89)90114-8  0.349
1989 Kurzban GP, Gitlin G, Bayer EA, Wilchek M, Horowitz PM. Shielding of tryptophan residues of avidin by the binding of biotin Biochemistry. 28: 8537-8542. PMID 2605203 DOI: 10.1021/Bi00447A040  0.392
1988 Mock DM, Lankford G, Horowitz P. A study of the interaction of avidin with 2-anilinonaphthalene-6-sulfonic acid as a probe of the biotin binding site Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 956: 23-29. PMID 3408737 DOI: 10.1016/0167-4838(88)90293-2  0.379
1988 Tandon S, Horowitz P. The effects of lauryl maltoside on the reactivation of several enzymes after treatment with guanidinium chloride. Biochimica Et Biophysica Acta. 955: 19-25. PMID 3382670 DOI: 10.1016/0167-4838(88)90175-6  0.413
1988 Nishimura JS, Ybarra J, Mitchell T, Horowitz PM. Isolation, amino acid analyses and refolding of subunits of pig heart succinyl-CoA synthetase Biochemical Journal. 250: 429-434. PMID 3281664 DOI: 10.1042/Bj2500429  0.4
1988 Aird BA, Horowitz PM. The differential functional stability of various forms of bovine liver rhodanese Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 956: 30-38. PMID 3165676 DOI: 10.1016/0167-4838(88)90294-4  0.418
1987 Prasad ARS, Prasad V, Ludueña RF, Horowitz PM. Interaction of tubulin with the macromolecular apolar probe, octyl sepharose Biochemical and Biophysical Research Communications. 145: 949-955. PMID 3593381 DOI: 10.1016/0006-291X(87)91057-6  0.366
1987 Lee JC, Horowitz P. Tritium exchange kinetics of yeast ribosomal subunits. Biochimica Et Biophysica Acta. 908: 109-112. PMID 3545296 DOI: 10.1016/0167-4781(87)90049-2  0.305
1987 Prasad ARS, Horowitz PM. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects or the sulfur-free and sulfur-containing catalytic intermediates Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 911: 102-108. PMID 3466649 DOI: 10.1016/0167-4838(87)90275-5  0.438
1987 Horowitz PM, Bowman S. Ion-enhanced fluorescence staining of sodium dodecyl sulfate-polyacrylamide gels using bis(8-p-toluidino-1-naphthalenesulfonate) Analytical Biochemistry. 165: 430-434. PMID 3425913 DOI: 10.1016/0003-2697(87)90292-2  0.361
1986 Mock DM, Langford G, Dubois D, Criscimagna N, Horowitz P. A fluorometric assay for the biotin-avidin interaction based on displacement of the fluorescent probe 2-anilinonaphthalene-6-sulfonic acid. Analytical Biochemistry. 151: 178-81. PMID 4091277 DOI: 10.1016/0003-2697(85)90068-5  0.416
1986 Prasad ARS, Luduena RF, Horowitz PM. Bis(8-anilinonaphthalene-1-sulfonate) as a probe for tubulin decay Biochemistry. 25: 739-742. PMID 3955027 DOI: 10.1021/Bi00351A035  0.386
1986 King RJ, Phillips MC, Horowitz PM, Dang SC. Interaction between the 35 kDa apolipoprotein of pulmonary surfactant and saturated phosphatidylcholines. Effects of temperature. Biochimica Et Biophysica Acta. 879: 1-13. PMID 3768381 DOI: 10.1016/0005-2760(86)90259-6  0.351
1986 Prasad ARS, Luduena RF, Horowitz PM. Detection of energy transfer between tryptophan residues in the tubulin molecule and bound bis(8-anilinonaphthalene-1-sulfonate), an inhibitor of microtubule assembly, that binds to a flexible region on tubulin Biochemistry. 25: 3536-3540. PMID 3718942 DOI: 10.1021/Bi00360A010  0.408
1986 Luduena RF, Roach MC, Horowitz P. The effects of the anilinonaphthalenesulfonates on the alkylation of tubulin: correlation between the appearance of sulfhydryl groups and apolar binding sites Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 873: 143-146. PMID 3509976 DOI: 10.1016/0167-4838(86)90200-1  0.34
1986 Horowitz P, Muhobereac BB, Falksen K, Wharton DC. Perturbation of Pseudomonas cytochrome oxidase by guanidine hydrochloride to detec differential stabilization of the heme d1 and heme c moieties Biochimica Et Biophysica Acta. 871: 142-148. PMID 3011097 DOI: 10.1016/0167-4838(86)90167-6  0.357
1986 Hill BC, Horowitz PM, Robinson NC. Detection, characterization, and quenching of the intrinsic fluorescence of bovine heart cytochrome c oxidase Biochemistry. 25: 2287-2292. PMID 3011084 DOI: 10.1021/Bi00356A065  0.411
1985 Horowitz PM. Rapid fluorescamine based protein assay usable in the presence of interfering substances Journal of Chromatography A. 319: 446-449. PMID 3998003 DOI: 10.1016/S0021-9673(01)90588-6  0.325
1985 Griess GA, Serwer P, Horowitz PM. Binding of ethidium to bacteriophage T7 and T7 deletion mutants Biopolymers - Peptide Science Section. 24: 1635-1646. PMID 3899209 DOI: 10.1002/Bip.360240816  0.304
1985 Wasylewski Z, Criscimagna NL, Horowitz PM. A fluorescence study of thermally induced conformational changes in yeast hexokinase Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 831: 201-206. PMID 3899179 DOI: 10.1016/0167-4838(85)90036-6  0.431
1985 Lee JC, Anderson R, Yeh YC, Horowitz P. Extraction of proteins from Saccharomyces cerevisiae ribosomes under nondenaturing conditions. Archives of Biochemistry and Biophysics. 237: 292-299. PMID 3883901 DOI: 10.1016/0003-9861(85)90280-2  0.343
1985 Horowitz PM, Criscimagna NL. Differential binding of the fluorescent probe 8-anilinonaphthalene-2-sulfonic acid to rhodanese catalytic intermediates Biochemistry. 24: 2587-2593. PMID 3861197 DOI: 10.1021/Bi00332A001  0.411
1985 Boggaram V, Horowitz P, Waterman MR. Studies on rhodanese synthesis in bovine adrenocortical cells. Biochemical and Biophysical Research Communications. 130: 407-411. PMID 2992467 DOI: 10.1016/0006-291X(85)90431-0  0.301
1984 Horowitz PM, Lee JC, Williams GA, Williams RF, Barnes LD. Electrophoresis of proteins and nucleic acids on acrylamide-agarose gels lacking covalent crosslinking. Analytical Biochemistry. 143: 333-40. PMID 6085222 DOI: 10.1016/0003-2697(84)90672-9  0.336
1983 Barnes LD, Robinson AK, Williams RF, Horowitz PM. Binding of colchicine to renal tubulin at 5 degrees C. Biochemical and Biophysical Research Communications. 116: 866-72. PMID 6651851 DOI: 10.1016/S0006-291X(83)80222-8  0.307
1983 Horowitz P, Falksen K. The use of tritium exchange to detect conformational differences between intermediates in catalysis by the enzyme rhodanese. Biochimica Et Biophysica Acta. 747: 37-41. PMID 6576809 DOI: 10.1016/0167-4838(83)90118-8  0.351
1983 Horowitz PM, Criscimagna NL. A study of the apolar interaction of the enzyme rhodanese with octyl substituted agarose gel Biochemical and Biophysical Research Communications. 111: 595-601. PMID 6573162 DOI: 10.1016/0006-291X(83)90348-0  0.45
1983 Prasad ARS, Nishimura JS, Horowitz PM. A study of the quenching of the intrinsic fluorescence of succinyl-CoA synthetase from Escherichia coli by acrylamide, iodide, and coenzyme A Biochemistry. 22: 4272-4275. PMID 6354251 DOI: 10.1021/Bi00287A017  0.371
1982 Horowitz P, Criscimagna NL. The specificity of active-site alkylation by iodoacetic acid in the enzyme thiosulfate sulfurtransferase Biochimica Et Biophysica Acta. 702: 173-177. PMID 6952939 DOI: 10.1016/0167-4838(82)90499-X  0.406
1982 Wasylewski Z, Horowitz PM. A Fluorescence study of conformational changes induced by substrate and temperature in bovine liver thiosulfate sulfurtransferase Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 701: 12-18. PMID 6948580 DOI: 10.1016/0167-4838(82)90305-3  0.427
1982 Prasad ARS, Nishimura JS, Horowitz PM. Fluorescence detection of increased local flexibility induced by coenzyme A in succinyl-coA synthetase from Escherichia coli. Biochemistry. 21: 5142-5147. PMID 6756468 DOI: 10.1021/Bi00264A006  0.323
1980 Horowitz PM, Wasylewski Z, Kolb WP. Fluorometric detection of low temperature thermal transitions in the C1Q component of human complement Biochemical and Biophysical Research Communications. 96: 382-387. PMID 6969077 DOI: 10.1016/0006-291X(80)91226-7  0.31
1980 Horowitz PM, Patel K. Some comparisons between solution and crystal properties of thiosulfate sulfurtransferase Biochemical and Biophysical Research Communications. 94: 419-423. PMID 6930969 DOI: 10.1016/0006-291X(80)91247-4  0.374
1978 Horowitz PM. Purification of thiosulfate sulfurtransferase by selective immobilization on blue agarose Analytical Biochemistry. 86: 751-753. PMID 655428 DOI: 10.1016/0003-2697(78)90803-5  0.343
1977 Guido K, Horowitz P. Studies of the N-bromosuccinimide inactivation of the enzyme rhodanese Biochimica Et Biophysica Acta. 485: 95-100. PMID 911868 DOI: 10.1016/0005-2744(77)90196-6  0.368
1977 Michaels GA, Whitlock SD, Horowitz P, Levin P. Binding of concanavalin A to nuclei of unsynchronized and synchronized HeLa cells. Biochemical and Biophysical Research Communications. 75: 480-7. PMID 851450 DOI: 10.1016/0006-291X(77)91067-1  0.303
1976 Guido K, Baillie RD, Horowitz PM. Spectral studies of the tryptophan exposure in the enzyme rhodanese Bba - Protein Structure. 427: 600-607. PMID 1268221 DOI: 10.1016/0005-2795(76)90203-8  0.419
1976 Baillie RD, Horowitz PM. The aromatic residue content of the enzyme rhodanese Bba - Protein Structure. 427: 594-599. PMID 1268220 DOI: 10.1016/0005-2795(76)90202-6  0.372
1976 Horowitz PM, Phillips PG. A sensitive competency assay for concanavalin A binding Analytical Biochemistry. 74: 171-174. PMID 962071 DOI: 10.1016/0003-2697(76)90321-3  0.311
1976 Baillie RD, Horowitz PM. A Reexamination of the postulated charge transfer interactions at the active site of the enzyme rhodanese Bba - Enzymology. 429: 402-408. PMID 130934 DOI: 10.1016/0005-2744(76)90288-6  0.353
1976 Baillie RD, Horowitz PM. Denaturation-induced disulfide formation in the enzyme rhodanese Bba - Enzymology. 429: 383-390. PMID 4128 DOI: 10.1016/0005-2744(76)90286-2  0.349
1976 Crawford JM, Horowitz PM. A study of the single polypeptide nature of rhodanese a comparison of different preparations Bba - Enzymology. 429: 173-181. PMID 4117 DOI: 10.1016/0005-2744(76)90039-5  0.369
1976 Pelley R, Horowitz P. Fluorimetric studies of tryptophyl exposure in concanavalin A. Biochimica Et Biophysica Acta. 427: 359-363. PMID 4111 DOI: 10.1016/0005-2795(76)90311-1  0.408
1975 Guido K, Horowitz PM. Contact versus energy transfer fluorescence quenching in the sulfur substituted form of the enzyme rhodanese: A study using cesium ion resolved emission spectra Biochemical and Biophysical Research Communications. 67: 670-676. PMID 1201046 DOI: 10.1016/0006-291X(75)90864-5  0.413
1975 Kim SK, Horowitz PM. A study of dithiothreitol inactivation of the enzyme rhodanese Biochemical and Biophysical Research Communications. 67: 433-439. PMID 1201034 DOI: 10.1016/0006-291X(75)90334-4  0.379
1974 Trumpower BL, Katki A, Horowitz P. Enhancement of rhodanese activity during controlled digestion with trypsin Biochemical and Biophysical Research Communications. 57: 523-528. PMID 4857284 DOI: 10.1016/0006-291X(74)90965-6  0.337
Show low-probability matches.