Anders Lansner - Publications

Affiliations: 
CB KTH Royal Institute of Technology, Stockholm, Stockholms län, Sweden 
Area:
computational neuroscience, brain-like computing
Website:
http://www.nada.kth.se/~ala/

131 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Ravichandran N, Lansner A, Herman P. Spiking representation learning for associative memories. Frontiers in Neuroscience. 18: 1439414. PMID 39371606 DOI: 10.3389/fnins.2024.1439414  0.349
2023 Lansner A, Fiebig F, Herman P. Fast Hebbian plasticity and working memory. Current Opinion in Neurobiology. 83: 102809. PMID 37980802 DOI: 10.1016/j.conb.2023.102809  0.774
2022 Chrysanthidis N, Fiebig F, Lansner A, Herman P. Traces of semantization - from episodic to semantic memory in a spiking cortical network model. Eneuro. PMID 35803714 DOI: 10.1523/ENEURO.0062-22.2022  0.792
2020 Yang Y, Stathis D, Jordão R, Hemani A, Lansner A. Optimizing BCPNN Learning Rule for Memory Access. Frontiers in Neuroscience. 14: 878. PMID 32982673 DOI: 10.3389/Fnins.2020.00878  0.43
2020 Fiebig F, Herman P, Lansner A. An Indexing Theory for Working Memory based on Fast Hebbian Plasticity. Eneuro. PMID 32127347 DOI: 10.1523/ENEURO.0374-19.2020  0.783
2020 Stathis D, Sudarshan C, Yang Y, Jung M, Jafri SAMH, Weis C, Hemani A, Lansner A, Wehn N. eBrainII: a 3 kW Realtime Custom 3D DRAM Integrated ASIC Implementation of a Biologically Plausible Model of a Human Scale Cortex Journal of Signal Processing Systems. 1-21. DOI: 10.1007/S11265-020-01562-X  0.4
2019 Chrysanthidis N, Fiebig F, Lansner A. Introducing double bouquet cells into a modular cortical associative memory model. Journal of Computational Neuroscience. PMID 31502234 DOI: 10.1007/S10827-019-00729-1  0.789
2019 Martinez RH, Lansner A, Herman P. Probabilistic associative learning suffices for learning the temporal structure of multiple sequences. Plos One. 14: e0220161. PMID 31369571 DOI: 10.1371/Journal.Pone.0220161  0.419
2017 Fiebig F, Lansner A. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 37: 83-96. PMID 28053032 DOI: 10.1523/Jneurosci.1989-16.2016  0.81
2016 Berthet P, Lindahl M, Tully PJ, Hellgren-Kotaleski J, Lansner A. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity. Frontiers in Neural Circuits. 10: 53. PMID 27493625 DOI: 10.3389/Fncir.2016.00053  0.339
2016 Tully PJ, Lindén H, Hennig MH, Lansner A. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences. Plos Computational Biology. 12: e1004954. PMID 27213810 DOI: 10.1371/Journal.Pcbi.1004954  0.449
2016 Knight JC, Tully PJ, Kaplan BA, Lansner A, Furber SB. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware. Frontiers in Neuroanatomy. 10: 37. PMID 27092061 DOI: 10.3389/Fnana.2016.00037  0.481
2015 Mazzoni A, Lindén H, Cuntz H, Lansner A, Panzeri S, Einevoll GT. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models. Plos Computational Biology. 11: e1004584. PMID 26657024 DOI: 10.1371/Journal.Pcbi.1004584  0.492
2015 Krishnamurthy P, Silberberg G, Lansner A. Long-range recruitment of Martinotti cells causes surround suppression and promotes saliency in an attractor network model. Frontiers in Neural Circuits. 9: 60. PMID 26528143 DOI: 10.3389/Fncir.2015.00060  0.678
2015 Vogginger B, Schüffny R, Lansner A, Cederström L, Partzsch J, Höppner S. Reducing the computational footprint for real-time BCPNN learning. Frontiers in Neuroscience. 9: 2. PMID 25657618 DOI: 10.3389/Fnins.2015.00002  0.407
2014 Petrovici MA, Vogginger B, Müller P, Breitwieser O, Lundqvist M, Muller L, Ehrlich M, Destexhe A, Lansner A, Schüffny R, Schemmel J, Meier K. Characterization and compensation of network-level anomalies in mixed-signal neuromorphic modeling platforms. Plos One. 9: e108590. PMID 25303102 DOI: 10.1371/Journal.Pone.0108590  0.436
2014 Fiebig F, Lansner A. Memory consolidation from seconds to weeks: a three-stage neural network model with autonomous reinstatement dynamics. Frontiers in Computational Neuroscience. 8: 64. PMID 25071536 DOI: 10.3389/Fncom.2014.00064  0.779
2014 Tully PJ, Hennig MH, Lansner A. Synaptic and nonsynaptic plasticity approximating probabilistic inference. Frontiers in Synaptic Neuroscience. 6: 8. PMID 24782758 DOI: 10.3389/Fnsyn.2014.00008  0.415
2014 Berthet P, Lansner A. Optogenetic stimulation in a computational model of the basal ganglia biases action selection and reward prediction error. Plos One. 9: e90578. PMID 24614169 DOI: 10.1371/Journal.Pone.0090578  0.321
2014 Kaplan BA, Lansner A. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system. Frontiers in Neural Circuits. 8: 5. PMID 24570657 DOI: 10.3389/Fncir.2014.00005  0.396
2014 Kaplan BA, Khoei MA, Lansner A, Perrinet LU. Signature of an anticipatory response in area VI as modeled by a probabilistic model and a spiking neural network Proceedings of the International Joint Conference On Neural Networks. 3205-3212. DOI: 10.1109/IJCNN.2014.6889847  0.332
2014 Marco S, Gutiérrez-Gálvez A, Lansner A, Martinez D, Rospars JP, Beccherelli R, Perera A, Pearce TC, Verschure PFMJ, Persaud K. A biomimetic approach to machine olfaction, featuring a very large-scale chemical sensor array and embedded neuro-bio-inspired computation Microsystem Technologies. 20: 729-742. DOI: 10.1007/S00542-013-2020-8  0.321
2013 Meli C, Lansner A. A modular attractor associative memory with patchy connectivity and weight pruning. Network (Bristol, England). 24: 129-50. PMID 24251411 DOI: 10.3109/0954898X.2013.859323  0.434
2013 Kaplan BA, Lansner A, Masson GS, Perrinet LU. Anisotropic connectivity implements motion-based prediction in a spiking neural network. Frontiers in Computational Neuroscience. 7: 112. PMID 24062680 DOI: 10.3389/Fncom.2013.00112  0.424
2013 Lansner A, Marklund P, Sikström S, Nilsson LG. Reactivation in working memory: an attractor network model of free recall. Plos One. 8: e73776. PMID 24023690 DOI: 10.1371/Journal.Pone.0073776  0.386
2013 Herman PA, Lundqvist M, Lansner A. Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network. Brain Research. 1536: 68-87. PMID 23939226 DOI: 10.1016/J.Brainres.2013.08.002  0.417
2013 Lundqvist M, Herman P, Lansner A. Effect of prestimulus alpha power, phase, and synchronization on stimulus detection rates in a biophysical attractor network model. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 33: 11817-24. PMID 23864671 DOI: 10.1523/Jneurosci.5155-12.2013  0.317
2013 Lundqvist M, Herman P, Palva M, Palva S, Silverstein D, Lansner A. Stimulus detection rate and latency, firing rates and 1-40Hz oscillatory power are modulated by infra-slow fluctuations in a bistable attractor network model. Neuroimage. 83: 458-71. PMID 23851323 DOI: 10.1016/J.Neuroimage.2013.06.080  0.445
2013 Schain M, Benjaminsson S, Varnäs K, Forsberg A, Halldin C, Lansner A, Farde L, Varrone A. Arterial input function derived from pairwise correlations between PET-image voxels. Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism. 33: 1058-65. PMID 23571279 DOI: 10.1038/Jcbfm.2013.47  0.756
2013 Tully P, Lindén H, Hennig MH, Lansner A. Probabilistic computation underlying sequence learning in a spiking attractor memory network Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P236  0.499
2012 Benjaminsson S, Lansner A. Nexa: a scalable neural simulator with integrated analysis. Network (Bristol, England). 23: 254-71. PMID 23116128 DOI: 10.3109/0954898X.2012.737087  0.813
2012 Berthet P, Hellgren-Kotaleski J, Lansner A. Action selection performance of a reconfigurable basal ganglia inspired model with Hebbian-Bayesian Go-NoGo connectivity. Frontiers in Behavioral Neuroscience. 6: 65. PMID 23060764 DOI: 10.3389/Fnbeh.2012.00065  0.331
2012 Krishnamurthy P, Silberberg G, Lansner A. A cortical attractor network with Martinotti cells driven by facilitating synapses. Plos One. 7: e30752. PMID 22523533 DOI: 10.1371/Journal.Pone.0030752  0.668
2012 Lundqvist M, Herman P, Lansner A. Variability of spike firing during θ-coupled replay of memories in a simulated attractor network. Brain Research. 1434: 152-61. PMID 21907326 DOI: 10.1016/J.Brainres.2011.07.055  0.462
2011 Auffarth B, Kaplan B, Lansner A. Map formation in the olfactory bulb by axon guidance of olfactory neurons. Frontiers in Systems Neuroscience. 5: 84. PMID 22013417 DOI: 10.3389/Fnsys.2011.00084  0.762
2011 Silverstein DN, Lansner A. Is attentional blink a byproduct of neocortical attractors? Frontiers in Computational Neuroscience. 5: 13. PMID 21625630 DOI: 10.3389/Fncom.2011.00013  0.402
2011 Brüderle D, Petrovici MA, Vogginger B, Ehrlich M, Pfeil T, Millner S, Grübl A, Wendt K, Müller E, Schwartz MO, de Oliveira DH, Jeltsch S, Fieres J, Schilling M, Müller P, ... ... Lansner A, et al. A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems. Biological Cybernetics. 104: 263-96. PMID 21618053 DOI: 10.1007/S00422-011-0435-9  0.318
2011 Lundqvist M, Herman P, Lansner A. Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model. Journal of Cognitive Neuroscience. 23: 3008-20. PMID 21452933 DOI: 10.1162/Jocn_A_00029  0.41
2011 Silverstein D, Lansner A, Ingvar M, Öhman A. A neural model of human fear pathways based on anatomical and neuroimaging data Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P241  0.402
2011 Silverstein D, Lansner A. Scaling of a biophysical neocortical attractor model using Parallel NEURON on the Blue Gene /P Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P191  0.446
2011 Berthet P, Lansner A. An abstract model of the basal ganglia, reward learning and action selection Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P189  0.368
2011 Benjaminsson S, Herman P, Lansner A. Odor segmentation and identification in an abstract large-scale model of the mammalian olfactory system Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P188  0.803
2011 Krishnamurthy P, Silberberg G, Lansner A. A cortical attractor network with dynamic synapses Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P187  0.674
2011 Kaplan B, Benjaminsson S, Lansner A. A large-scale model of the three first stages of the mammalian olfactory system implemented with spiking neurons Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P185  0.803
2011 Rehn M, Silverstein D, Olmårs J, Lansner A. A hybrid model of the primary visual cortex Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P184  0.652
2011 Lansner A. Perceptual and memory functions in a cortex-inspired attractor network model Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-K2  0.493
2011 Fonollosa J, Gutierrez-Galvez A, Lansner A, Martinez D, Rospars JP, Beccherelli R, Perera A, Pearce T, Vershure P, Persaud K, Marco S. Biologically inspired computation for chemical sensing Procedia Computer Science. 7: 226-227. DOI: 10.1016/J.Procs.2011.09.066  0.302
2010 Benjaminsson S, Fransson P, Lansner A. A novel model-free data analysis technique based on clustering in a mutual information space: application to resting-state FMRI. Frontiers in Systems Neuroscience. 4. PMID 20721313 DOI: 10.3389/Fnsys.2010.00034  0.779
2010 Lundqvist M, Compte A, Lansner A. Bistable, irregular firing and population oscillations in a modular attractor memory network. Plos Computational Biology. 6: e1000803. PMID 20532199 DOI: 10.1371/Journal.Pcbi.1000803  0.455
2010 Benjaminsson S, Lansner A. Adaptive sensor drift counteraction by a modular neural network Neuroscience Research. 68: e212. DOI: 10.1016/J.Neures.2010.07.2508  0.797
2009 Kozlov A, Huss M, Lansner A, Kotaleski JH, Grillner S. Simple cellular and network control principles govern complex patterns of motor behavior. Proceedings of the National Academy of Sciences of the United States of America. 106: 20027-32. PMID 19901329 DOI: 10.1073/Pnas.0906722106  0.737
2009 Sandström M, Lansner A, Hellgren-Kotaleski J, Rospars JP. Modeling the response of a population of olfactory receptor neurons to an odorant. Journal of Computational Neuroscience. 27: 337-55. PMID 19415478 DOI: 10.1007/S10827-009-0147-5  0.309
2009 Lansner A. Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends in Neurosciences. 32: 178-86. PMID 19187979 DOI: 10.1016/J.Tins.2008.12.002  0.34
2009 Silverstein D, Lansner A. Simulating attentional blink with a neocortical attractor model Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P309  0.356
2009 Sandström M, Proschinger T, Lansner A. A bulb model implementing fuzzy coding of odor concentration Aip Conference Proceedings. 1137: 159-162. DOI: 10.1063/1.3156496  0.532
2009 Johansson C, Lansner A. Implementing plastic weights in neural networks using low precision arithmetic Neurocomputing. 72: 968-972. DOI: 10.1016/J.Neucom.2008.04.007  0.564
2009 Lansner A, Benjaminsson S, Johansson C. From ANN to biomimetic information processing Studies in Computational Intelligence. 188: 33-43. DOI: 10.1007/978-3-642-00176-5_2  0.746
2008 Djurfeldt M, Ekeberg O, Lansner A. Large-scale modeling - a tool for conquering the complexity of the brain. Frontiers in Neuroinformatics. 2: 1. PMID 18974793 DOI: 10.3389/Neuro.11.001.2008  0.758
2008 Sandström M, Proschinger T, Lansner A. Fuzzy interval representation of olfactory stimulus concentration in an olfactory glomerulus model Bmc Neuroscience. 9. DOI: 10.1186/1471-2202-9-S1-P123  0.578
2008 Djurfeldt M, Lundqvist M, Johansson C, Rehn M, Ekeberg OO, Lansner A. Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer Ibm Journal of Research and Development. 52: 31-42. DOI: 10.1147/Rd.521.0031  0.801
2007 Grillner S, Kozlov A, Dario P, Stefanini C, Menciassi A, Lansner A, Hellgren Kotaleski J. Modeling a vertebrate motor system: pattern generation, steering and control of body orientation. Progress in Brain Research. 165: 221-34. PMID 17925249 DOI: 10.1016/S0079-6123(06)65014-0  0.78
2007 Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, ... Lansner A, et al. Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience. 23: 349-98. PMID 17629781 DOI: 10.1007/S10827-007-0038-6  0.749
2007 Johansson C, Lansner A. Imposing biological constraints onto an abstract neocortical attractor network model. Neural Computation. 19: 1871-96. PMID 17521282 DOI: 10.1162/Neco.2007.19.7.1871  0.627
2007 Huss M, Lansner A, Wallén P, El Manira A, Grillner S, Kotaleski JH. Roles of ionic currents in lamprey CpG neurons: a modeling study. Journal of Neurophysiology. 97: 2696-711. PMID 17287443 DOI: 10.1152/Jn.00528.2006  0.807
2007 Kozlov AK, Lansner A, Grillner S, Kotaleski JH. A hemicord locomotor network of excitatory interneurons: a simulation study. Biological Cybernetics. 96: 229-43. PMID 17180687 DOI: 10.1007/S00422-006-0132-2  0.701
2007 Johansson C, Lansner A. Towards cortex sized artificial neural systems. Neural Networks : the Official Journal of the International Neural Network Society. 20: 48-61. PMID 16860539 DOI: 10.1016/J.Neunet.2006.05.029  0.617
2007 Westermark PO, Kotaleski JH, Björklund A, Grill V, Lansner A. A mathematical model of the mitochondrial NADH shuttles and anaplerosis in the pancreatic beta-cell. American Journal of Physiology. Endocrinology and Metabolism. 292: E373-93. PMID 16849626 DOI: 10.1152/Ajpendo.00589.2005  0.471
2007 Sandström M, Lansner A, Rospars J. Modelling the population of olfactory receptor neurons Bmc Neuroscience. 8. DOI: 10.1186/1471-2202-8-S2-P156  0.62
2007 Djurfeldt M, Lansner A. Workshop report: 1st INCF Workshop on Large-scale Modeling of the Nervous System Nature Precedings. 2: 1-1. DOI: 10.1038/Npre.2007.262.1  0.729
2007 Sandström M, Hellgren Kotaleski J, Lansner A. Scaling effects in a model of the olfactory bulb Neurocomputing. 70: 1802-1807. DOI: 10.1016/J.Neucom.2006.10.062  0.8
2007 Johansson C, Rehn M, Lansner A. Attractor neural networks with patchy connectivity Esann 2005 Proceedings - 13th European Symposium On Artificial Neural Networks. 429-434. DOI: 10.1016/J.Neucom.2005.12.002  0.723
2006 Johansson C, Ekeberg O, Lansner A. Clustering of stored memories in an attractor network with local competition. International Journal of Neural Systems. 16: 393-403. PMID 17285686 DOI: 10.1142/S0129065706000809  0.683
2006 Lundqvist M, Rehn M, Djurfeldt M, Lansner A. Attractor dynamics in a modular network model of neocortex. Network (Bristol, England). 17: 253-76. PMID 17162614 DOI: 10.1080/09548980600774619  0.812
2006 Lundqvist M, Rehn M, Lansner A. Attractor dynamics in a modular network model of the cerebral cortex Neurocomputing. 69: 1155-1159. DOI: 10.1016/J.Neucom.2005.12.065  0.652
2006 Sandström M, Hjorth J, Lansner A, Kotaleski JH. The impact of the distribution of isoforms on CaMKII activation Neurocomputing. 69: 1010-1013. DOI: 10.1016/J.Neucom.2005.12.035  0.745
2006 Johansson C, Lansner A. Attractor memory with self-organizing input Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3853: 265-280. DOI: 10.1007/11613022_22  0.573
2005 De Schutter E, Ekeberg O, Kotaleski JH, Achard P, Lansner A. Biophysically detailed modelling of microcircuits and beyond. Trends in Neurosciences. 28: 562-9. PMID 16118023 DOI: 10.1016/J.Tins.2005.08.002  0.634
2005 Yuste R, MacLean JN, Smith J, Lansner A. The cortex as a central pattern generator. Nature Reviews. Neuroscience. 6: 477-83. PMID 15928717 DOI: 10.1038/Nrn1686  0.306
2005 Çürüklü B, Lansner A. A model of the summation pools within the layer 4 (area 17) Neurocomputing. 65: 167-172. DOI: 10.1016/J.Neucom.2004.10.004  0.322
2004 Svantesson A, Westermark PO, Kotaleski JH, Gharizadeh B, Lansner A, Nyrén P. A mathematical model of the Pyrosequencing reaction system. Biophysical Chemistry. 110: 129-45. PMID 15223150 DOI: 10.1016/J.Bpc.2004.01.010  0.509
2004 Rehn M, Lansner A. Sequence memory with dynamical synapses Neurocomputing. 58: 271-278. DOI: 10.1016/J.Neucom.2004.01.055  0.604
2004 Johansson C, Lansner A. Towards cortex sized attractor ANN Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3141: 63-79. DOI: 10.1007/978-3-540-27835-1_6  0.569
2004 Johansson C, Lansner A. Towards Cortex Sized Artificial Nervous Systems Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3213: 959-966.  0.385
2003 Sandberg A, Tegnér J, Lansner A. A working memory model based on fast Hebbian learning. Network (Bristol, England). 14: 789-802. PMID 14653503 DOI: 10.1088/0954-898X/14/4/309  0.555
2003 Westermark PO, Lansner A. A model of phosphofructokinase and glycolytic oscillations in the pancreatic beta-cell. Biophysical Journal. 85: 126-39. PMID 12829470 DOI: 10.1016/S0006-3495(03)74460-9  0.506
2003 Lansner A, Fransén E, Sandberg A. Cell assembly dynamics in detailed and abstract attractor models of cortical associative memory Theory in Biosciences. 122: 19-36. DOI: 10.1078/1431-7613-00072  0.593
2003 Kozlov A, Lansner A, Grillner S. Burst dynamics under mixed NMDA and AMPA drive in the models of the lamprey spinal CPG Neurocomputing. 52: 65-71. DOI: 10.1016/S0925-2312(02)00795-6  0.632
2003 Huss M, Hess D, d'Incamps BL, El Manira A, Lansner A, Kotaleski JH. Role of A-current in lamprey locomotor network neurons Neurocomputing. 52: 295-300. DOI: 10.1016/S0925-2312(02)00784-1  0.738
2003 Eriksson D, Fransén E, Zilberter Y, Lansner A. Effects of short-term synaptic plasticity in a local microcircuit on cell firing Neurocomputing. 52: 7-12. DOI: 10.1016/S0925-2312(02)00757-9  0.301
2002 Sandberg A, Lansner A, Petersson KM, Ekeberg O. A Bayesian attractor network with incremental learning. Network (Bristol, England). 13: 179-94. PMID 12061419 DOI: 10.1088/0954-898X/13/2/302  0.694
2002 Kozlov AK, Ullén F, Fagerstedt P, Aurell E, Lansner A, Grillner S. Mechanisms for lateral turns in lamprey in response to descending unilateral commands: a modeling study. Biological Cybernetics. 86: 1-14. PMID 11918208 DOI: 10.1007/S004220100272  0.643
2002 Sandberg A, Lansner A. Synaptic depression as an intrinsic driver of reinstatement dynamics in an attractor network Neurocomputing. 44: 615-622. DOI: 10.1016/S0925-2312(02)00448-4  0.579
2002 Johansson C, Sandberg A, Lansner A. Attractor neural networks with hypercolumns Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2415: 192-197.  0.635
2001 Kozlov A, Kotaleski JH, Aurell E, Grillner S, Lansner A. Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG: consequences for network pattern generation. Journal of Computational Neuroscience. 11: 183-200. PMID 11717534 DOI: 10.1023/A:1012806018730  0.652
2001 Wahlgren N, Lansner A. Biological evaluation of a Hebbian-Bayesian learning rule Neurocomputing. 38: 433-438. DOI: 10.1016/S0925-2312(01)00370-8  0.313
2001 Sandberg A, Lansner A, Petersson KM. Selective enhancement of recall through plasticity modulation in an autoassociative memory Neurocomputing. 38: 867-873. DOI: 10.1016/S0925-2312(01)00363-0  0.551
2000 Sandberg A, Lansner A, Petersson KM, Ekeberg O. A palimpsest memory based on an incremental Bayesian learning rule Neurocomputing. 32: 987-994. DOI: 10.1016/S0925-2312(00)00270-8  0.679
2000 Kozlov A, Kotaleski JH, Aurell E, Grillner S, Lansner A. Modeling of plasticity of the synaptic connections in the lamprey spinal CPG - Consequences for network behavior Neurocomputing. 32: 441-446. DOI: 10.1016/S0925-2312(00)00197-1  0.639
2000 Orre R, Lansner A, Bate A, Lindquist M. Bayesian neural networks with confidence estimations applied to data mining Computational Statistics and Data Analysis. 34: 473-493. DOI: 10.1016/S0167-9473(99)00114-0  0.769
1999 Kotaleski JH, Grillner S, Lansner A. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.I. Segmental oscillations dependent on reciprocal inhibition. Biological Cybernetics. 81: 317-30. PMID 10541935 DOI: 10.1007/S004220050565  0.674
1999 Kotaleski JH, Lansner A, Grillner S. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.II. Hemisegmental oscillations produced by mutually coupled excitatory neurons. Biological Cybernetics. 81: 299-315. PMID 10541934 DOI: 10.1007/S004220050564  0.665
1999 Djurfeldt M, Sandberg A, Ekeberg O, Lansner A. See - A framework for simulation of biologically detailed and artificial neural networks and systems Neurocomputing. 26: 997-1003. DOI: 10.1016/S0925-2312(99)00096-X  0.802
1999 Kotaleski JH, Tegnér J, Grillner S, Lansner A. Control of burst proportion and frequency range by drive-dependent modulation of adaptation Neurocomputing. 26: 185-191. DOI: 10.1016/S0925-2312(99)00080-6  0.645
1998 Lansner A, Kotaleski JH, Grillner S. Modeling of the spinal neuronal circuitry underlying locomotion in a lower vertebrate. Annals of the New York Academy of Sciences. 860: 239-49. PMID 9928316 DOI: 10.1111/J.1749-6632.1998.Tb09053.X  0.699
1998 Fransén E, Lansner A. A model of cortical associative memory based on a horizontal network of connected columns. Network (Bristol, England). 9: 235-64. PMID 9861988 DOI: 10.1088/0954-898X/9/2/006  0.497
1998 Ullström M, Kotaleski JH, Tegnér J, Aurell E, Grillner S, Lansner A. Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator. Biological Cybernetics. 79: 1-14. PMID 9742673 DOI: 10.1007/S004220050453  0.671
1998 Bate A, Lindquist M, Edwards IR, Olsson S, Orre R, Lansner A, De Freitas RM. A Bayesian neural network method for adverse drug reaction signal generation. European Journal of Clinical Pharmacology. 54: 315-21. PMID 9696956 DOI: 10.1007/S002280050466  0.76
1998 Grillner S, Ekeberg, El Manira A, Lansner A, Parker D, Tegnér J, Wallén P. Intrinsic function of a neuronal network - a vertebrate central pattern generator. Brain Research. Brain Research Reviews. 26: 184-97. PMID 9651523 DOI: 10.1016/S0165-0173(98)00002-2  0.766
1998 Tegnér J, Lansner A, Grillner S. Modulation of burst frequency by calcium-dependent potassium channels in the lamprey locomotor system: dependence of the activity level. Journal of Computational Neuroscience. 5: 121-40. PMID 9617663 DOI: 10.1023/A:1008897031013  0.683
1998 Li G, Lansner A, Svensson B. Self-orienting with on-line learning of environmental features Adaptive Behavior. 6: 535-566. DOI: 10.1177/105971239800600308  0.303
1997 Tegnér J, Hellgren-Kotaleski J, Lansner A, Grillner S. Low-voltage-activated calcium channels in the lamprey locomotor network: simulation and experiment. Journal of Neurophysiology. 77: 1795-812. PMID 9114237 DOI: 10.1152/Jn.1997.77.4.1795  0.646
1997 Wadden T, Hellgren J, Lansner A, Grillner S. Intersegmental coordination in the lamprey: Simulations using a network model without segmental boundaries Biological Cybernetics. 76: 1-9. DOI: 10.1007/S004220050316  0.635
1996 Lansner A, Holst A. A higher order Bayesian neural network with spiking units. International Journal of Neural Systems. 7: 115-28. PMID 8823623 DOI: 10.1142/S0129065796000816  0.432
1995 Grillner S, Deliagina T, Ekeberg O, el Manira A, Hill RH, Lansner A, Orlovsky GN, Wallén P. Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends in Neurosciences. 18: 270-9. PMID 7571002 DOI: 10.1016/0166-2236(95)80008-P  0.811
1995 Ekeberg Ö, Grillner S, Lansner A. The Neural Control of Fish Swimming Studied Through Numerical Simulations Adaptive Behavior. 3: 363-384. DOI: 10.1177/105971239500300402  0.736
1995 Fransén E, Lansner A. Low spiking rates in a population of mutually exciting pyramidal cells Network: Computation in Neural Systems. 6: 271-288. DOI: 10.1088/0954-898X_6_2_008  0.461
1995 Lansner A, Fransén E. Distributed cell assemblies and detailed cell models Behavioral and Brain Sciences. 18: 637-638. DOI: 10.1017/S0140525X00040292  0.411
1994 Lansner A, Ekeberg O. Neuronal network models of motor generation and control. Current Opinion in Neurobiology. 4: 903-8. PMID 7888775 DOI: 10.1016/0959-4388(94)90140-6  0.63
1993 Holst A, Lansner A. A flexible and fault tolerant query-reply system based on a Bayesian neural network. International Journal of Neural Systems. 4: 257-67. PMID 8293231 DOI: 10.1142/S0129065793000213  0.322
1993 TrÃ¥vén HG, Brodin L, Lansner A, Ekeberg O, Wallén P, Grillner S. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks. Journal of Neurophysiology. 70: 695-709. PMID 8105036 DOI: 10.1152/Jn.1993.70.2.695  0.735
1993 HAMMARLUND P, LEVIN B, LANSNER A. BIOLOGICALLY REALISTIC AND ARTIFICIAL NEURAL NETWORK SIMULATORS ON THE CONNECTION MACHINE International Journal of Modern Physics C. 4: 49-63. DOI: 10.1142/S0129183193000070  0.44
1992 Hellgren J, Grillner S, Lansner A. Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons. Biological Cybernetics. 68: 1-13. PMID 1486127 DOI: 10.1007/Bf00203132  0.681
1992 Wallén P, Ekeberg O, Lansner A, Brodin L, TrÃ¥vén H, Grillner S. A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey. Journal of Neurophysiology. 68: 1939-50. PMID 1283406 DOI: 10.1152/Jn.1992.68.6.1939  0.762
1991 Ekeberg O, Wallén P, Lansner A, TrÃ¥vén H, Brodin L, Grillner S. A computer based model for realistic simulations of neural networks. I. The single neuron and synaptic interaction. Biological Cybernetics. 65: 81-90. PMID 1912005 DOI: 10.1007/Bf00202382  0.771
1991 Brodin L, TrÃ¥vén HG, Lansner A, Wallén P, Ekeberg O, Grillner S. Computer simulations of N-methyl-D-aspartate receptor-induced membrane properties in a neuron model. Journal of Neurophysiology. 66: 473-84. PMID 1723094 DOI: 10.1152/Jn.1991.66.2.473  0.712
1991 Grillner S, Wallén P, Brodin L, Lansner A. Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. Annual Review of Neuroscience. 14: 169-99. PMID 1674412 DOI: 10.1146/Annurev.Ne.14.030191.001125  0.644
1989 Wallén P, Christenson J, Brodin L, Hill R, Lansner A, Grillner S. Mechanisms underlying the serotonergic modulation of the spinal circuitry for locomotion in lamprey. Progress in Brain Research. 80: 321-7; discussion 31. PMID 2699371 DOI: 10.1016/S0079-6123(08)62227-X  0.602
1989 Lansner A, Ekeberg Ö. A ONE-LAYER FEEDBACK ARTIFICIAL NEURAL NETWORK WITH A BAYESIAN LEARNING RULE International Journal of Neural Systems. 1: 77-87. DOI: 10.1142/S0129065789000499  0.639
1988 Grillner S, Buchanan JT, Lansner A. Simulation of the segmental burst generating network for locomotion in lamprey. Neuroscience Letters. 89: 31-5. PMID 3399139 DOI: 10.1016/0304-3940(88)90476-4  0.679
1985 Lansner A, Ekeberg O. Reliability and speed of recall in an associative network. Ieee Transactions On Pattern Analysis and Machine Intelligence. 7: 490-8. PMID 21869287 DOI: 10.1109/Tpami.1985.4767688  0.581
1970 Lansner A, Benjaminsson S, Fransson P. A novel model-free fMRI data analysis technique based on clustering in a mutual information space Frontiers in Neuroinformatics. DOI: 10.3389/Conf.Neuro.11.2009.08.028  0.76
Show low-probability matches.