Year |
Citation |
Score |
2021 |
Cohen Y, Schneidman E, Paz R. The geometry of neuronal representations during rule learning reveals complementary roles of cingulate cortex and putamen. Neuron. PMID 33484641 DOI: 10.1016/j.neuron.2020.12.027 |
0.641 |
|
2020 |
Maoz O, Tkačik G, Esteki MS, Kiani R, Schneidman E. Learning probabilistic neural representations with randomly connected circuits. Proceedings of the National Academy of Sciences of the United States of America. 117: 25066-25073. PMID 32948691 DOI: 10.1073/Pnas.1912804117 |
0.772 |
|
2020 |
Harpaz R, Schneidman E. Social interactions drive efficient foraging and income equality in groups of fish. Elife. 9. PMID 32838839 DOI: 10.7554/Elife.56196 |
0.617 |
|
2020 |
Levy DR, Tamir T, Kaufman M, Parabucki A, Weissbrod A, Schneidman E, Yizhar O. Author Correction: Dynamics of social representation in the mouse prefrontal cortex. Nature Neuroscience. PMID 32127691 DOI: 10.1038/S41593-020-0612-Z |
0.591 |
|
2019 |
Levy DR, Tamir T, Kaufman M, Parabucki A, Weissbrod A, Schneidman E, Yizhar O. Dynamics of social representation in the mouse prefrontal cortex. Nature Neuroscience. 22: 2013-2022. PMID 31768051 DOI: 10.1038/S41593-019-0531-Z |
0.632 |
|
2019 |
Deutsch D, Schneidman E, Ahissar E. Generalization of Object Localization From Whiskers to Other Body Parts in Freely Moving Rats. Frontiers in Integrative Neuroscience. 13: 64. PMID 31736724 DOI: 10.3389/fnint.2019.00064 |
0.565 |
|
2018 |
Bod'ová K, Mitchell GJ, Harpaz R, Schneidman E, Tkačik G. Probabilistic models of individual and collective animal behavior. Plos One. 13: e0193049. PMID 29513700 DOI: 10.1371/Journal.Pone.0193049 |
0.77 |
|
2017 |
Harpaz R, Tkačik G, Schneidman E. Discrete modes of social information processing predict individual behavior of fish in a group. Proceedings of the National Academy of Sciences of the United States of America. PMID 28874581 DOI: 10.1073/Pnas.1703817114 |
0.77 |
|
2017 |
Karpas ED, Shklarsh A, Schneidman E. Information socialtaxis and efficient collective behavior emerging in groups of information-seeking agents. Proceedings of the National Academy of Sciences of the United States of America. PMID 28507154 DOI: 10.1073/pnas.1618055114 |
0.371 |
|
2016 |
Shemesh Y, Forkosh O, Mahn M, Anpilov S, Sztainberg Y, Manashirov S, Shlapobersky T, Elliott E, Tabouy L, Ezra G, Adler ES, Ben-Efraim YJ, Gil S, Kuperman Y, Haramati S, ... ... Schneidman E, et al. Ucn3 and CRF-R2 in the medial amygdala regulate complex social dynamics. Nature Neuroscience. PMID 27428651 DOI: 10.1038/Nn.4346 |
0.747 |
|
2016 |
Schneidman E. Towards the design principles of neural population codes. Current Opinion in Neurobiology. 37: 133-140. PMID 27016639 DOI: 10.1016/j.conb.2016.03.001 |
0.482 |
|
2015 |
Ganmor E, Segev R, Schneidman E. A thesaurus for a neural population code. Elife. 4. PMID 26347983 DOI: 10.7554/Elife.06134 |
0.783 |
|
2014 |
Shemesh Y, Sztainberg Y, Forkosh O, Shlapobersky T, Chen A, Schneidman E. Correction: High-order social interactions in groups of mice. Elife. 3: e03602. PMID 24920500 DOI: 10.7554/Elife.03602 |
0.751 |
|
2014 |
Tka?ik G, Ghosh A, Schneidman E, Segev R. Adaptation to changes in higher-order stimulus statistics in the salamander retina. Plos One. 9: e85841. PMID 24465742 DOI: 10.1371/Journal.Pone.0085841 |
0.7 |
|
2014 |
Tkačik G, Marre O, Amodei D, Schneidman E, Bialek W, Berry MJ. Searching for collective behavior in a large network of sensory neurons. Plos Computational Biology. 10: e1003408. PMID 24391485 DOI: 10.1371/Journal.Pcbi.1003408 |
0.796 |
|
2013 |
Vasserman G, Schneidman E, Segev R. Adaptive colour contrast coding in the salamander retina efficiently matches natural scene statistics. Plos One. 8: e79163. PMID 24205373 DOI: 10.1371/journal.pone.0079163 |
0.698 |
|
2013 |
Shemesh Y, Sztainberg Y, Forkosh O, Shlapobersky T, Chen A, Schneidman E. High-order social interactions in groups of mice. Elife. 2: e00759. PMID 24015357 DOI: 10.7554/Elife.00759 |
0.767 |
|
2013 |
Granot-Atedgi E, Tka?ik G, Segev R, Schneidman E. Stimulus-dependent maximum entropy models of neural population codes. Plos Computational Biology. 9: e1002922. PMID 23516339 DOI: 10.1371/Journal.Pcbi.1002922 |
0.757 |
|
2013 |
Tka?ik G, Granot-Atedgi E, Segev R, Schneidman E. Retinal metric: a stimulus distance measure derived from population neural responses. Physical Review Letters. 110: 058104. PMID 23414051 DOI: 10.1103/Physrevlett.110.058104 |
0.741 |
|
2013 |
Cohen Y, Schneidman E. High-order feature-based mixture models of classification learning predict individual learning curves and enable personalized teaching. Proceedings of the National Academy of Sciences of the United States of America. 110: 684-9. PMID 23269833 DOI: 10.1073/pnas.1211606110 |
0.502 |
|
2012 |
Deutsch D, Pietr M, Knutsen PM, Ahissar E, Schneidman E. Fast feedback in active sensing: touch-induced changes to whisker-object interaction. Plos One. 7: e44272. PMID 23028512 DOI: 10.1371/Journal.Pone.0044272 |
0.655 |
|
2012 |
Kfir Y, Renan I, Schneidman E, Segev R. The natural variation of a neural code. Plos One. 7: e33149. PMID 22427973 DOI: 10.1371/journal.pone.0033149 |
0.746 |
|
2011 |
Schneidman E, Puchalla JL, Segev R, Harris RA, Bialek W, Berry MJ. Synergy from silence in a combinatorial neural code. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 31: 15732-41. PMID 22049416 DOI: 10.1523/JNEUROSCI.0301-09.2011 |
0.791 |
|
2011 |
Ganmor E, Segev R, Schneidman E. Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proceedings of the National Academy of Sciences of the United States of America. 108: 9679-84. PMID 21602497 DOI: 10.1073/Pnas.1019641108 |
0.818 |
|
2011 |
Ganmor E, Segev R, Schneidman E. The architecture of functional interaction networks in the retina. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 31: 3044-54. PMID 21414925 DOI: 10.1523/Jneurosci.3682-10.2011 |
0.791 |
|
2010 |
Tkacik G, Prentice JS, Balasubramanian V, Schneidman E. Optimal population coding by noisy spiking neurons. Proceedings of the National Academy of Sciences of the United States of America. 107: 14419-24. PMID 20660781 DOI: 10.1073/Pnas.1004906107 |
0.8 |
|
2010 |
Haddad R, Weiss T, Khan R, Nadler B, Mandairon N, Bensafi M, Schneidman E, Sobel N. Global features of neural activity in the olfactory system form a parallel code that predicts olfactory behavior and perception. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 30: 9017-26. PMID 20610736 DOI: 10.1523/Jneurosci.0398-10.2010 |
0.385 |
|
2009 |
Tkacik G, Prentice J, Schneidman E, Balasubramanian V. Optimal correlation codes in populations of noisy spiking neurons Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-O13 |
0.801 |
|
2009 |
Ganmor E, Segev R, Schneidman E. How fast can we learn maximum entropy models of neural populations? Journal of Physics: Conference Series. 197. DOI: 10.1088/1742-6596/197/1/012020 |
0.776 |
|
2007 |
Segev R, Schneidman E, Goodhouse J, Berry MJ. Role of eye movements in the retinal code for a size discrimination task. Journal of Neurophysiology. 98: 1380-91. PMID 17625063 DOI: 10.1152/jn.00395.2007 |
0.725 |
|
2006 |
Schneidman E, Berry MJ, Segev R, Bialek W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature. 440: 1007-12. PMID 16625187 DOI: 10.1038/nature04701 |
0.816 |
|
2005 |
Puchalla JL, Schneidman E, Harris RA, Berry MJ. Redundancy in the population code of the retina. Neuron. 46: 493-504. PMID 15882648 DOI: 10.1016/j.neuron.2005.03.026 |
0.784 |
|
2003 |
Schneidman E, Bialek W, Berry MJ. Synergy, redundancy, and independence in population codes. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 23: 11539-53. PMID 14684857 DOI: 10.1523/Jneurosci.23-37-11539.2003 |
0.718 |
|
2003 |
Schneidman E, Still S, Berry MJ, Bialek W. Network information and connected correlations. Physical Review Letters. 91: 238701. PMID 14683220 DOI: 10.1103/Physrevlett.91.238701 |
0.769 |
|
2003 |
Schneidman E, Bialek W, Berry MJ. An information theoretic approach to the functional classification of neurons Advances in Neural Information Processing Systems. |
0.637 |
|
2002 |
Dubnov S, El-Yaniv R, Gdalyahu Y, Schneidman E, Tishby N, Yona G. A new nonparametric pairwise clustering algorithm based on iterative estimation of distance profiles Machine Learning. 47: 35-61. DOI: 10.1023/A:1013631728342 |
0.692 |
|
2001 |
Schneidman E, Brenner N, Tishby N, De Ruyter Van Steveninck RR, Bialek W. Universality and individuality in a neural code Advances in Neural Information Processing Systems. |
0.709 |
|
2000 |
Schneidman E, Segev I, Tishby N. Information capacity and robustness of stochastic neuron models Advances in Neural Information Processing Systems. 178-184. |
0.714 |
|
1999 |
Segev I, Schneidman E. Axons as computing devices: basic insights gained from models. Journal of Physiology, Paris. 93: 263-70. PMID 10574116 DOI: 10.1016/S0928-4257(00)80055-8 |
0.546 |
|
1998 |
Schneidman E, Freedman B, Segev I. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Computation. 10: 1679-703. PMID 9744892 DOI: 10.1162/089976698300017089 |
0.61 |
|
Show low-probability matches. |