Year |
Citation |
Score |
2019 |
Tang H, Shrager JB, Goldman D. Rapamycin protects aging muscle. Aging. PMID 31454792 DOI: 10.18632/aging.102176 |
0.48 |
|
2019 |
Tang H, Inoki K, Brooks SV, Okazawa H, Lee M, Wang J, Kim M, Kennedy CL, Macpherson PCD, Ji X, Van Roekel S, Fraga DA, Wang K, Zhu J, Wang Y, ... ... Goldman D, et al. mTORC1 underlies age-related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell. e12943. PMID 30924297 DOI: 10.1111/acel.12943 |
0.48 |
|
2016 |
Wan J, Goldman D. Retina regeneration in zebrafish. Current Opinion in Genetics & Development. 40: 41-47. PMID 27281280 DOI: 10.1016/j.gde.2016.05.009 |
0.8 |
|
2016 |
Zhang S, Mu Z, He C, Zhou M, Liu D, Zhao XF, Goldman D, Xu H. Antiviral Drug Ganciclovir Is a Potent Inhibitor of the Proliferation of Müller Glia-Derived Progenitors During Zebrafish Retinal Regeneration. Investigative Ophthalmology & Visual Science. 57: 1991-2000. PMID 27096757 DOI: 10.1167/iovs.15-18669 |
0.8 |
|
2016 |
Powell C, Cornblath E, Elsaeidi F, Wan J, Goldman D. Zebrafish Müller glia-derived progenitors are multipotent, exhibit proliferative biases and regenerate excess neurons. Scientific Reports. 6: 24851. PMID 27094545 DOI: 10.1038/srep24851 |
0.8 |
|
2015 |
Macpherson PC, Farshi P, Goldman D. Dach2-Hdac9 signaling regulates reinnervation of muscle endplates. Development (Cambridge, England). PMID 26483211 DOI: 10.1242/dev.125674 |
0.8 |
|
2015 |
Ramachandran R, Fausett BV, Goldman D. Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nature Cell Biology. 17: 532. PMID 25812527 DOI: 10.1038/ncb3144 |
0.8 |
|
2014 |
Zhao XF, Goldman D. A new transgenic line reporting pStat3 signaling in glia. Zebrafish. 11: 588-9. PMID 25372358 DOI: 10.1089/zeb.2014.1502 |
0.8 |
|
2014 |
Wan J, Zhao XF, Vojtek A, Goldman D. Retinal injury, growth factors, and cytokines converge on β-catenin and pStat3 signaling to stimulate retina regeneration. Cell Reports. 9: 285-97. PMID 25263555 DOI: 10.1016/j.celrep.2014.08.048 |
0.8 |
|
2014 |
Zhao XF, Wan J, Powell C, Ramachandran R, Myers MG, Goldman D. Leptin and IL-6 family cytokines synergize to stimulate Müller glia reprogramming and retina regeneration. Cell Reports. 9: 272-84. PMID 25263554 DOI: 10.1016/j.celrep.2014.08.047 |
0.8 |
|
2014 |
Powell C, Cornblath E, Goldman D. Zinc-binding domain-dependent, deaminase-independent actions of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 2 (Apobec2), mediate its effect on zebrafish retina regeneration. The Journal of Biological Chemistry. 289: 28924-41. PMID 25190811 DOI: 10.1074/jbc.M114.603043 |
0.8 |
|
2014 |
Skaggs K, Goldman D, Parent JM. Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration. Glia. 62: 2061-79. PMID 25043622 DOI: 10.1002/glia.22726 |
0.8 |
|
2014 |
Goldman D. Regeneration, morphogenesis and self-organization. Development (Cambridge, England). 141: 2745-9. PMID 25005469 DOI: 10.1242/dev.107839 |
0.8 |
|
2014 |
Goldman D. Müller glial cell reprogramming and retina regeneration. Nature Reviews. Neuroscience. 15: 431-42. PMID 24894585 DOI: 10.1038/nrn3723 |
0.8 |
|
2014 |
Tang H, Inoki K, Lee M, Wright E, Khuong A, Khuong A, Sugiarto S, Garner M, Paik J, DePinho RA, Goldman D, Guan KL, Shrager JB. mTORC1 promotes denervation-induced muscle atrophy through a mechanism involving the activation of FoxO and E3 ubiquitin ligases. Science Signaling. 7: ra18. PMID 24570486 DOI: 10.1126/scisignal.2004809 |
0.8 |
|
2014 |
Elsaeidi F, Bemben MA, Zhao XF, Goldman D. Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 34: 2632-44. PMID 24523552 DOI: 10.1523/JNEUROSCI.3898-13.2014 |
0.8 |
|
2014 |
Lindell SG, Yuan Q, Zhou Z, Goldman D, Thompson RC, Lopez JF, Suomi SJ, Higley JD, Barr CS. The serotonin transporter gene is a substrate for age and stress dependent epigenetic regulation in rhesus macaque brain: Potential roles in genetic selection and Gene × Environment interactions-CORRIGENDUM Development and Psychopathology. DOI: 10.1017/S0954579414000583 |
0.48 |
|
2013 |
Powell C, Grant AR, Cornblath E, Goldman D. Analysis of DNA methylation reveals a partial reprogramming of the Müller glia genome during retina regeneration. Proceedings of the National Academy of Sciences of the United States of America. 110: 19814-9. PMID 24248357 DOI: 10.1073/pnas.1312009110 |
0.8 |
|
2012 |
Lindell SG, Yuan Q, Zhou Z, Goldman D, Thompson RC, Lopez JF, Suomi SJ, Higley JD, Barr CS. The serotonin transporter gene is a substrate for age and stress dependent epigenetic regulation in rhesus macaque brain: potential roles in genetic selection and gene × environment interactions. Development and Psychopathology. 24: 1391-400. PMID 23062305 DOI: 10.1017/S0954579412000788 |
0.48 |
|
2012 |
Ramachandran R, Zhao XF, Goldman D. Insm1a-mediated gene repression is essential for the formation and differentiation of Müller glia-derived progenitors in the injured retina. Nature Cell Biology. 14: 1013-23. PMID 23000964 DOI: 10.1038/ncb2586 |
0.8 |
|
2012 |
Yuan Q, Zhou Z, Lindell SG, Higley JD, Ferguson B, Thompson RC, Lopez JF, Suomi SJ, Baghal B, Baker M, Mash DC, Barr CS, Goldman D. The rhesus macaque is three times as diverse but more closely equivalent in damaging coding variation as compared to the human. Bmc Genetics. 13: 52. PMID 22747632 DOI: 10.1186/1471-2156-13-52 |
0.48 |
|
2012 |
Ramachandran R, Reifler A, Wan J, Goldman D. Application of Cre-loxP recombination for lineage tracing of adult zebrafish retinal stem cells. Methods in Molecular Biology (Clifton, N.J.). 884: 129-40. PMID 22688702 DOI: 10.1007/978-1-61779-848-1_8 |
0.8 |
|
2012 |
Wan J, Ramachandran R, Goldman D. HB-EGF is necessary and sufficient for Müller glia dedifferentiation and retina regeneration. Developmental Cell. 22: 334-47. PMID 22340497 DOI: 10.1016/j.devcel.2011.11.020 |
0.8 |
|
2012 |
Powell C, Elsaeidi F, Goldman D. Injury-dependent Müller glia and ganglion cell reprogramming during tissue regeneration requires Apobec2a and Apobec2b. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 32: 1096-109. PMID 22262907 DOI: 10.1523/JNEUROSCI.5603-11.2012 |
0.8 |
|
2012 |
Bohnsack BL, Kasprick DS, Kish PE, Goldman D, Kahana A. A zebrafish model of axenfeld-rieger syndrome reveals that pitx2 regulation by retinoic acid is essential for ocular and craniofacial development. Investigative Ophthalmology & Visual Science. 53: 7-22. PMID 22125274 DOI: 10.1167/iovs.11-8494 |
0.8 |
|
2011 |
Ramachandran R, Zhao XF, Goldman D. Ascl1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration. Proceedings of the National Academy of Sciences of the United States of America. 108: 15858-63. PMID 21911394 DOI: 10.1073/pnas.1107220108 |
0.8 |
|
2011 |
Macpherson PC, Wang X, Goldman D. Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle. Journal of Cellular Biochemistry. 112: 2149-59. PMID 21465538 DOI: 10.1002/jcb.23136 |
0.8 |
|
2011 |
Ghiasvand NM, Rudolph DD, Mashayekhi M, Brzezinski JA, Goldman D, Glaser T. Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nature Neuroscience. 14: 578-86. PMID 21441919 DOI: 10.1038/nn.2798 |
0.8 |
|
2010 |
Ramachandran R, Fausett BV, Goldman D. Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nature Cell Biology. 12: 1101-7. PMID 20935637 DOI: 10.1038/ncb2115 |
0.8 |
|
2010 |
Ramachandran R, Reifler A, Parent JM, Goldman D. Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration. The Journal of Comparative Neurology. 518: 4196-212. PMID 20878783 DOI: 10.1002/cne.22448 |
0.8 |
|
2010 |
Veldman MB, Bemben MA, Goldman D. Tuba1a gene expression is regulated by KLF6/7 and is necessary for CNS development and regeneration in zebrafish. Molecular and Cellular Neurosciences. 43: 370-83. PMID 20123021 DOI: 10.1016/j.mcn.2010.01.004 |
0.8 |
|
2009 |
Tang H, Macpherson P, Marvin M, Meadows E, Klein WH, Yang XJ, Goldman D. A histone deacetylase 4/myogenin positive feedback loop coordinates denervation-dependent gene induction and suppression. Molecular Biology of the Cell. 20: 1120-31. PMID 19109424 DOI: 10.1091/mbc.E08-07-0759 |
0.8 |
|
2009 |
Suhr ST, Ramachandran R, Fuller CL, Veldman MB, Byrd CA, Goldman D. Highly-restricted, cell-specific expression of the simian CMV-IE promoter in transgenic zebrafish with age and after heat shock. Gene Expression Patterns : Gep. 9: 54-64. PMID 18723125 DOI: 10.1016/j.gep.2008.07.002 |
0.8 |
|
2008 |
Fausett BV, Gumerson JD, Goldman D. The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 28: 1109-17. PMID 18234889 DOI: 10.1523/JNEUROSCI.4853-07.2008 |
0.8 |
|
2008 |
Dowling JJ, Gibbs E, Russell M, Goldman D, Minarcik J, Golden JA, Feldman EL. Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac structure and function. Circulation Research. 102: 423-31. PMID 18174465 DOI: 10.1161/CIRCRESAHA.107.161489 |
0.8 |
|
2007 |
Veldman MB, Bemben MA, Thompson RC, Goldman D. Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Developmental Biology. 312: 596-612. PMID 17949705 DOI: 10.1016/j.ydbio.2007.09.019 |
0.8 |
|
2007 |
Buchner DA, Su F, Yamaoka JS, Kamei M, Shavit JA, Barthel LK, McGee B, Amigo JD, Kim S, Hanosh AW, Jagadeeswaran P, Goldman D, Lawson ND, Raymond PA, Weinstein BM, et al. pak2a mutations cause cerebral hemorrhage in redhead zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 104: 13996-4001. PMID 17715297 DOI: 10.1073/pnas.0700947104 |
0.8 |
|
2007 |
Catalano AE, Raymond PA, Goldman D, Wei X. Zebrafish dou yan mutation causes patterning defects and extensive cell death in the retina. Developmental Dynamics : An Official Publication of the American Association of Anatomists. 236: 1295-306. PMID 17436278 DOI: 10.1002/dvdy.21148 |
0.8 |
|
2007 |
Senut MC, Fausett B, Veldman M, Goldman D. Gene Regulation During Axon and Tissue Regeneration in the Retina of Zebrafish Model Organisms in Spinal Cord Regeneration. 373-394. DOI: 10.1002/9783527610365.ch13 |
0.8 |
|
2006 |
Tang H, Goldman D. Activity-dependent gene regulation in skeletal muscle is mediated by a histone deacetylase (HDAC)-Dach2-myogenin signal transduction cascade. Proceedings of the National Academy of Sciences of the United States of America. 103: 16977-82. PMID 17075071 DOI: 10.1073/pnas.0601565103 |
0.8 |
|
2006 |
Gulati-Leekha A, Goldman D. A reporter-assisted mutagenesis screen using alpha 1-tubulin-GFP transgenic zebrafish uncovers missteps during neuronal development and axonogenesis. Developmental Biology. 296: 29-47. PMID 16784739 DOI: 10.1016/j.ydbio.2006.03.024 |
0.8 |
|
2006 |
Fausett BV, Goldman D. A role for alpha1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 26: 6303-13. PMID 16763038 DOI: 10.1523/JNEUROSCI.0332-06.2006 |
0.8 |
|
2006 |
Sayer JA, Otto EA, O'Toole JF, Nurnberg G, Kennedy MA, Becker C, Hennies HC, Helou J, Attanasio M, Fausett BV, Utsch B, Khanna H, Liu Y, Drummond I, Kawakami I, ... ... Goldman D, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nature Genetics. 38: 674-81. PMID 16682973 DOI: 10.1038/ng1786 |
0.8 |
|
2006 |
Macpherson PC, Cieslak D, Goldman D. Myogenin-dependent nAChR clustering in aneural myotubes. Molecular and Cellular Neurosciences. 31: 649-60. PMID 16443371 DOI: 10.1016/j.mcn.2005.12.005 |
0.8 |
|
2006 |
Tang H, Veldman MB, Goldman D. Characterization of a muscle-specific enhancer in human MuSK promoter reveals the essential role of myogenin in controlling activity-dependent gene regulation. The Journal of Biological Chemistry. 281: 3943-53. PMID 16361705 DOI: 10.1074/jbc.M511317200 |
0.8 |
|
2005 |
Bruneau EG, Macpherson PC, Goldman D, Hume RI, Akaaboune M. The effect of agrin and laminin on acetylcholine receptor dynamics in vitro. Developmental Biology. 288: 248-58. PMID 16256100 DOI: 10.1016/j.ydbio.2005.09.041 |
0.8 |
|
2004 |
Hirata H, Saint-Amant L, Waterbury J, Cui W, Zhou W, Li Q, Goldman D, Granato M, Kuwada JY. accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1. Development (Cambridge, England). 131: 5457-68. PMID 15469975 DOI: 10.1242/dev.01410 |
0.8 |
|
2004 |
Senut MC, Gulati-Leekha A, Goldman D. An element in the α1-tubulin promoter is necessary for retinal expression during optic nerve regeneration but not after eye injury in the adult zebrafish Journal of Neuroscience. 24: 7663-7673. PMID 15342733 DOI: 10.1523/JNEUROSCI.2281-04.2004 |
0.8 |
|
2004 |
Macpherson PCD, Suhr ST, Goldman D. Activity-dependent gene regulation in conditionally-immortalized muscle precursor cell lines Journal of Cellular Biochemistry. 91: 821-839. PMID 14991773 DOI: 10.1002/jcb.10784 |
0.8 |
|
2004 |
Tang H, Macpherson P, Argetsinger LS, Cieslak D, Suhr ST, Carter-Su C, Goldman D. CaM kinase II-dependent phosphorylation of myogenin contributes to activity-dependent suppression of nAChR gene expression in developing rat myotubes Cellular Signalling. 16: 551-563. PMID 14751541 DOI: 10.1016/j.cellsig.2003.09.006 |
0.8 |
|
2002 |
Macpherson P, Kostrominova T, Tang H, Goldman D. Protein kinase C and calcium/calmodulin-activated protein kinase II (CaMK II) suppress nicotinic acetylcholine receptor gene expression in mammalian muscle. A specific role for CaMK II in activity-dependent gene expression Journal of Biological Chemistry. 277: 15638-15646. PMID 11877392 DOI: 10.1074/jbc.M109864200 |
0.8 |
|
2002 |
Rowley JA, Sun Z, Goldman D, Mooney DJ. Biomaterials to spatially regulate cell fate Advanced Materials. 14: 886-889. DOI: 10.1002/1521-4095(20020618)14:12<886::AID-ADMA886>3.0.CO;2-I |
0.8 |
|
2001 |
Tang H, Sun Z, Goldman D. CaM Kinase II-dependent Suppression of Nicotinic Acetylcholine Receptor δ-Subunit Promoter Activity Journal of Biological Chemistry. 276: 26057-26065. PMID 11350961 DOI: 10.1074/jbc.M101670200 |
0.8 |
|
2001 |
Goldman D, Hankin M, Li Z, Dai X, Ding J. Transgenic zebrafish for studying nervous system development and regeneration Transgenic Research. 10: 21-33. PMID 11252380 DOI: 10.1023/A:1008998832552 |
0.8 |
|
2000 |
Goldman D, Ding J. Different regulatory elements are necessary for α1 tubulin induction during CNS development and regeneration Neuroreport. 11: 3859-3863. PMID 11117504 |
0.8 |
|
2000 |
Petrausch B, Tabibiazar R, Roser T, Jing Y, Goldman D, Stuermer CA, Irwin N, Benowitz LI. A purine-sensitive pathway regulates multiple genes involved in axon regeneration in goldfish retinal ganglion cells. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 20: 8031-41. PMID 11050124 |
0.8 |
|
2000 |
Kostrominova TY, Macpherson PCD, Carlson BM, Goldman D. Regulation of myogenin protein expression in denervated muscles from young and old rats American Journal of Physiology - Regulatory Integrative and Comparative Physiology. 279: R179-R188. PMID 10896880 |
0.8 |
|
1998 |
Hieber V, Dai X, Foreman M, Goldman D. Induction of α1-tubulin gene expression during development and regeneration of the fish central nervous system Journal of Neurobiology. 37: 429-440. PMID 9828048 DOI: 10.1002/(SICI)1097-4695(19981115)37:3<429::AID-NEU8>3.0.CO;2-N |
0.8 |
|
1998 |
Goldman D, Sapru MK, Stewart S, Plotkin J, Libermann TA, Wasylyk B, Guan K. Cloning and characterization of GETS-1, a goldfish Ets family member that functions as a transcriptional repressor in muscle Biochemical Journal. 335: 267-275. PMID 9761723 |
0.8 |
|
1998 |
Goldman D, Sapru MK. Molecular Mechanisms Mediating Synapse-Specific Gene Expression during Development of the Neuromuscular Junction Canadian Journal of Applied Physiology. 23: 390-395. PMID 9677435 |
0.8 |
|
1998 |
Adams L, Goldman D. Role for calcium from the sarcoplasmic reticulum in coupling muscle activity to nicotinic acetylcholine receptor gene expression in rat Journal of Neurobiology. 35: 245-257. PMID 9622008 DOI: 10.1002/(SICI)1097-4695(19980605)35:3<245::AID-NEU2>3.0.CO;2-Z |
0.8 |
|
1998 |
Sapru MK, Florance SK, Kirk C, Goldman D. Identification of a neuregulin and protein-tyrosine phosphatase response element in the nicotinic acetylcholine receptor ε subunit gene: Regulatory role of an Ets transcription factor Proceedings of the National Academy of Sciences of the United States of America. 95: 1289-1294. PMID 9448324 DOI: 10.1073/pnas.95.3.1289 |
0.8 |
|
1997 |
Hoover F, Hankin MH, Radel JD, Reese JS, Goldman D. Axon-target interactions maintain synaptic gene expression in retinae transplanted to intracranial regions of the rat Molecular Brain Research. 51: 123-132. PMID 9427514 DOI: 10.1016/S0169-328X(97)00228-3 |
0.8 |
|
1997 |
Schultz K, Goldman DJ, Ohtsuka T, Hirano J, Barton L, Stell WK. Identification and localization of an immunoreactive AMPA-type glutamate receptor subunit (GluR4) with respect to identified photoreceptor synapses in the outer plexiform layer of goldfish retina. Journal of Neurocytology. 26: 651-66. PMID 9368879 DOI: 10.1023/A:1018597811439 |
0.8 |
|
1996 |
Walke W, Xiao G, Goldman D. A dual function activity-dependent, muscle-specific enhancer from rat nicotinic acetylcholine receptor δ-subunit gene Journal of Neurobiology. 31: 359-369. PMID 8910793 DOI: 10.1002/(SICI)1097-4695(199611)31:3<359::AID-NEU8>3.0.CO;2-9 |
0.8 |
|
1996 |
Hoover F, Reese JS, Radel JD, Goldman D, Hankin MH. Opsin gene expression and regulation in retinal transplants Brain Research. 718: 124-128. PMID 8773774 DOI: 10.1016/0006-8993(96)00085-6 |
0.8 |
|
1996 |
Walke W, Xiao G, Goldman D. Identification and characterization of a 47 base pair activity-dependent enhancer of the rat nicotinic acetylcholine receptor δ-subunit promoter Journal of Neuroscience. 16: 3641-3651. PMID 8642408 |
0.8 |
|
1996 |
Sapru MK, Gao JP, Walke W, Burmeister M, Goldman D. Cloning and characterization of a novel transcriptional repressor of the nicotinic acetylcholine receptor delta-subunit gene. The Journal of Biological Chemistry. 271: 7203-11. PMID 8636158 DOI: 10.1074/jbc.271.12.7203 |
0.8 |
|
1996 |
Burmeister M, Novak J, Liang MY, Basu S, Ploder L, Hawes NL, Vidgen D, Hoover F, Goldman D, Kalnins VI, Roderick TH, Taylor BA, Hankin MH, McInnes RR. Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nature Genetics. 12: 376-84. PMID 8630490 DOI: 10.1038/ng0496-376 |
0.8 |
|
1995 |
Adams L, Carlson BM, Henderson L, Goldman D. Adaptation of nicotinic acetylcholine receptor, myogenin, and MRF4 gene expression to long-term muscle denervation Journal of Cell Biology. 131: 1341-1349. PMID 8522594 DOI: 10.1083/jcb.131.5.1341 |
0.8 |
|
1995 |
Gilmour BP, Goldman D, Chahine KG, Gardner PD. Electrical Activity Suppresses Nicotinic Acetylcholine Receptor γ Subunit Promoter Activity Developmental Biology. 168: 416-428. PMID 7729578 DOI: 10.1006/dbio.1995.1091 |
0.8 |
|
1995 |
Hieber VC, Goldman D. Trans-synaptic regulation of NMDA receptor RNAs during optic nerve regeneration Journal of Neuroscience. 15: 5286-5296. PMID 7623151 |
0.8 |
|
1994 |
Walke W, Staple J, Adams L, Gnegy M, Chahine K, Goldman D. Calcium-dependent regulation of rat and chick muscle nicotinic acetylcholine receptor (nAChR) gene expression Journal of Biological Chemistry. 269: 19447-19456. PMID 8034713 |
0.8 |
|
1994 |
Sapru MK, Zhou G, Goldman D. Protein-tyrosine phosphatases specifically regulate muscle adult-type nicotinic acetylcholine receptor gene expression Journal of Biological Chemistry. 269: 27811-27814. PMID 7961707 |
0.8 |
|
1993 |
Hankin MH, Hoover F, Goldman D. Cues intrinsic to the retina induce nAChR gene expression during development Journal of Neurobiology. 24: 1099-1110. PMID 8409970 |
0.8 |
|
1993 |
Chahine KG, Baracchini E, Goldman D. Coupling muscle electrical activity to gene expression via a cAMP-dependent second messenger system Journal of Biological Chemistry. 268: 2893-2898. PMID 8381416 |
0.8 |
|
1992 |
Chahine KG, Walke W, Goldman D. A 102 base pair sequence of the nicotinic acetylcholine receptor delta-subunit gene confers regulation by muscle electrical activity Development. 115: 213-219. PMID 1638981 |
0.8 |
|
1992 |
Hoover F, Goldman D. Temporally correlated expression of nAChR genes during development of the mammalian retina Experimental Eye Research. 54: 561-571. PMID 1623941 DOI: 10.1016/0014-4835(92)90135-F |
0.8 |
|
1992 |
Hieber V, Agranoff BW, Goldman D. Target-dependent regulation of retinal nicotinic acetylcholine receptor and tubulin RNAs during optic nerve regeneration in goldfish. Journal of Neurochemistry. 58: 1009-15. PMID 1371143 |
0.8 |
|
1991 |
Goldman D, Carlson BM, Staple J. Induction of adult-type nicotinic acetylcholine receptor gene expression in noninnervated regenerating muscle Neuron. 7: 649-658. PMID 1931052 DOI: 10.1016/0896-6273(91)90377-C |
0.8 |
|
1990 |
Hieber V, Bouchey J, Agranoff BW, Goldman D. Nucleotide and deduced amino acid sequence of the goldfish neural nicotinic acetylcholine receptor beta-2 subunit. Nucleic Acids Research. 18: 5307. PMID 2402468 DOI: 10.1093/nar/18.17.5307 |
0.8 |
|
1990 |
Hieber V, Bouchey J, Agranoff BW, Goldman D. Nucleotide and deduced amino acid sequence of the goldfish neural nicotinic acetylcholine receptor alpha-3 subunit. Nucleic Acids Research. 18: 5293. PMID 2402459 DOI: 10.1093/nar/18.17.5293 |
0.8 |
|
1990 |
Cauley K, Agranoff BW, Goldman D. Multiple nicotinic acetylcholine receptor genes are expressed in goldfish retina and tectum. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 10: 670-83. PMID 2303867 |
0.8 |
|
1989 |
Goldman D, Tamai K. Coordinate regulation of RNAs encoding two isoforms of the rat muscle nicotinic acetylcholine receptor (β-subunit Nucleic Acids Research. 17: 3049-3056. PMID 2726451 DOI: 10.1093/nar/17.8.3049 |
0.8 |
|
1989 |
Deneris ES, Boulter J, Connolly J, Wada E, Wada K, Goldman D, Swanson LW, Patrick J, Heinemann S. Genes encoding neuronal nicotinic acetylcholine receptors. Clinical Chemistry. 35: 731-7. PMID 2655998 |
0.8 |
|
1989 |
Patel PD, Sherman TG, Goldman DJ, Watson SJ. Molecular cloning of a mineralocorticoid (type I) receptor complementary DNA from rat hippocampus. Molecular Endocrinology (Baltimore, Md.). 3: 1877-85. PMID 2558305 DOI: 10.1210/mend-3-11-1877 |
0.8 |
|
1989 |
Goldman D, Staple J. Spatial and temporal expression of acetylcholine receptor RNAs in innervated and denervated rat soleus muscle Neuron. 3: 219-228. PMID 2483113 DOI: 10.1016/0896-6273(89)90035-4 |
0.8 |
|
1989 |
Cauley K, Agranoff BW, Goldman D. Identification of a novel nicotinic acetylcholine receptor structural subunit expressed in goldfish retina. The Journal of Cell Biology. 108: 637-45. PMID 2465296 |
0.8 |
|
1988 |
Goldman D, Brenner HR, Heinemann S. Acetylcholine receptor alpha-, beta-, gamma-, and delta-subunit mRNA levels are regulated by muscle activity. Neuron. 1: 329-33. PMID 3272739 DOI: 10.1016/0896-6273(88)90081-5 |
0.8 |
|
1987 |
Goldman D, Deneris E, Luyten W, Kochhar A, Patrick J, Heinemann S. Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell. 48: 965-73. PMID 3829125 DOI: 10.1016/0092-8674(87)90705-7 |
0.8 |
|
1987 |
Black R, Goldman D, Hochschwender S, Lindstrom J, Hall ZW. Genetic variants of C2 muscle cells that are defective in synthesis of the alpha-subunit of the acetylcholine receptor. The Journal of Cell Biology. 105: 1329-36. PMID 3654754 |
0.8 |
|
1987 |
Goldman D, Evans S, Boulter J, Patrick J, Heinemann S. Neural regulation of acetylcholine receptor gene expression. Annals of the New York Academy of Sciences. 505: 286-300. PMID 3479927 |
0.8 |
|
1987 |
Patrick J, Boulter J, Goldman D, Gardner P, Heinemann S. Molecular biology of nicotinic acetylcholine receptors. Annals of the New York Academy of Sciences. 505: 194-207. PMID 2446547 |
0.8 |
|
1987 |
Boulter J, Connolly J, Deneris E, Goldman D, Heinemann S, Patrick J. Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proceedings of the National Academy of Sciences of the United States of America. 84: 7763-7. PMID 2444984 |
0.8 |
|
1987 |
Evans S, Goldman D, Heinemann S, Patrick J. Muscle acetylcholine receptor biosynthesis. Regulation by transcript availability Journal of Biological Chemistry. 262: 4911-4916. PMID 2435720 |
0.8 |
|
1986 |
Boulter J, Evans K, Goldman D, Martin G, Treco D, Heinemann S, Patrick J. Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. Nature. 319: 368-74. PMID 3753746 DOI: 10.1038/319368a0 |
0.8 |
|
1986 |
Goldman D, Simmons D, Swanson LW, Patrick J, Heinemann S. Mapping of brain areas expressing RNA homologous to two different acetylcholine receptor alpha-subunit cDNAs. Proceedings of the National Academy of Sciences of the United States of America. 83: 4076-80. PMID 3012549 |
0.8 |
|
1985 |
Goldman D, Boulter J, Heinemann S, Patrick J. Muscle denervation increases the levels of two mRNAs coding for the acetylcholine receptor alpha-subunit. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 5: 2553-8. PMID 4032011 |
0.8 |
|
1985 |
Boulter J, Luyten W, Evans K, Mason P, Ballivet M, Goldman D, Stengelin S, Martin G, Heinemann S, Patrick J. Isolation of a clone coding for the alpha-subunit of a mouse acetylcholine receptor. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 5: 2545-52. PMID 2993547 |
0.8 |
|
1985 |
Nettleton DO, Goldman DJ, Ordal GW. In vitro methylation and demethylation of bacterial MCPS Federation Proceedings. 44: No. 7925. |
0.8 |
|
1984 |
Goldman DJ, Ordal GW. In vitro methylation and demethylation of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochemistry. 23: 2600-6. PMID 6432032 |
0.8 |
|
1984 |
Goldman DJ, Nettleton DO, Ordal GW. Purification and characterization of chemotactic methylesterase from Bacillus subtilis. Biochemistry. 23: 675-80. PMID 6424705 |
0.8 |
|
1982 |
Goldman DJ, Worobec SW, Siegel RB, Hecker RV, Ordal GW. Chemotaxis in Bacillus subtilis: effects of attractants on the level of methylation of methyl-accepting chemotaxis proteins and the role of demethylation in the adaptation process. Biochemistry. 21: 915-20. PMID 6803831 DOI: 10.1021/bi00534a016 |
0.8 |
|
1981 |
Goldman DJ, Ordal GW. Sensory adaptation and deadaptation by Bacillus subtilis. Journal of Bacteriology. 147: 267-70. PMID 6787028 |
0.8 |
|
1976 |
Ordal GW, Goldman DJ. Chemotactic repellents of Bacillus subtilis. Journal of Molecular Biology. 100: 103-8. PMID 814244 DOI: 10.1016/S0022-2836(76)80037-X |
0.8 |
|
1975 |
Ordal GW, Goldman DJ. Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis. Science (New York, N.Y.). 189: 802-5. PMID 808854 |
0.8 |
|
Show low-probability matches. |